arcsinx的图_反三角函数图像大全

这篇博客详细介绍了反三角函数的图像特征,包括反正弦、反余弦、反正切和反余切函数的图像,以及它们的拐点、渐近线、单调性和对称性。还探讨了反三角函数的定义域、主值范围及其与三角函数的关系。内容涵盖了反三角函数的性质、公式和应用,适合数学和计算机科学的学习者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

反三角函数图像

反三角函数图像与特征

反正弦曲线图像与特征 反余弦曲线图像与特征

拐点(同曲线对称中心): 拐点(同曲线对称中心): 1 ,该点切线斜率为 , 该点切线斜率为-1

反正切曲线图像与特征

反余切曲线图像与特征

拐点: 拐点(同曲线对称中心): 为1 ,该点切线斜率 , 该点切线斜率为-1

渐近线:

渐近线:

名称 方程

反正割曲线

反余割曲线

图像

顶点 渐近线

反三角函数的定义域与主值范围

函数 主值记号 ,则 ,则 ,则 ,则 ,则 定义域 主值范围 反正弦 若 反余弦 若 反正切 若 反余切 若 反正割 若

反余割 若

,则

一般反三角函数与主值的关系为

式中 n 为任意数

百科名片

是一种数学术语。 反三角函数并不能狭义的理解为三角函数的反函数,是个多值 函数。它是反正弦 arcsin x,反余弦 arccos x,反正切 arctan x,反余切 arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为 x 的角。

数学术语

为限制反三角函数为单值函数, 将反正弦函数的值 y 限在-π/2≤y≤π/2, y 作为 将 反正弦函数的主值,记为 y=arcsin x;相应地,反余弦函数 y=arccos x 的主值限 在 0≤y≤π; 反正切函数 y=arctan x 的主值限在-π/2

2012-12-22

46424人浏览

反三角函数公式大全

反三角函数公式大全

三角函数的反函数,是多值函数。它们是反正弦 Arcsin x,反余 弦 Arccos x,反正切 Arctan x,反余切 Arccot x,反正割 Arcsec x=1/cosx,反余割 Arccsc x=1/sinx 等,各自表示其正弦、余弦、正切、 余切、正割、余割为 x 的角。为限制反三角函数为单值函数,将反正 弦函数的值 y 限在 y=-π/2≤y≤π/2,将 y 为反正弦函数的主值,记为 y=arcsin x;相应地,反余弦函数 y=arccos x 的主值限在 0≤y≤π;反正 切函数 y=arctan x 的主值限在-π/2

反三角函数公式: arcsin(-x)=-arcsinx arccos(-x)=∏-arccosx

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当 x∈ 〔—∏/2,∏/2〕时,有 arcsin(sinx)=x 当 x∈ 〔0,∏〕,arccos(cosx)=x x∈ (—∏/2,∏/2),arctan(tanx)=x x∈ (0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx 类似 若(arctanx+arctany)∈ (—∏/2, ∏/2),则 arctanx+arctany=arctan(x+y/1-xy)

2013-02-09

190686人浏览

角和反三角函数图像

六个三角函数值在每个象限的符号:

三角、反三角函数图像

三角函数的图像和性质:

sinα·cscα

cosα·secα

tanα·cotα

y=sinx

y

-4 -7 -3 2

-5

2 -2 -3 - 2

-2 1 o

-1

2

3

7

2

2

2 5 3 2

4

x

y=cosx

y

-3

-4 -7 2

-5

2 -2

- -3 2

-2

1

o

-1

2

3 2

2

3 5 2

7

2 4

x

y

y=tanx

y

y=cotx

3 -2

-

-2

o

2

3 x

2

-

-2

o

2

3 2 x

2

函数 定义域

值域

周期性 奇偶性

单调性

y=sinx

R

[-1,1]x=2kπ+ 时 ymax=1 2

x=2kπ- 时 ymin=-1 2

y=cosx

R

[-1,1] x=2kπ 时 ymax=1 x=2kπ+π 时 ymin=-1

y=tanx

{x|x∈R 且 x≠kπ+ ,k∈Z} 2

y=cotx {x|x∈R 且 x≠kπ,k∈Z}

R 无最大值 无最小值

R 无最大值 无最小值

周期为 2π

奇函数

在[2kπ- ,2kπ+ ]上都是增函数;在

2

2

[2kπ+ ,2kπ+ 2 π]上都是减函数

2

3

(k∈Z)

周期为 2π 偶函数 在[2kπ-π,2kπ]上都是增函 数;在[2kπ,2kπ+π]上都是 减函数(k∈Z)

周期为 π

奇函数

在(kπ- ,kπ+ )内都是增函

2

2

数(k∈Z)

周期为 π 奇函数 在(kπ,kπ+π)内都是减函数 (k∈Z)

arcsinx

arccosx

arctanx

arccotx

名称 定义

理解 定义域

值域 性 单调性 质

奇偶性

反正弦函数

反余弦函数

反正切函数

y=sinx(x∈〔- , 〕) y=cosx(x∈〔0,π〕)的反 y=tanx(x∈(- , )的反函

2 2 函数,叫做反余弦函数,

22

的反函数,叫做反正弦 记作 x=arccosy

数,叫做反正切函数,记作

函数,记作 x=arsiny

x=arctany

arcsinx 表示属于

[-

2020-05-16

195人浏览

(完整版)反三角函数公式大全

反三角函数公式大全 三角函数的反函数,是多值函数。它们是反正弦 Arcsin x,反余 弦 Arccos x,反正切 Arctan x,反余切 Arccot x,反正割 Arcsec x=1/cosx,反余割 Arccsc x=1/sinx 等,各自表示其正弦、余弦、正切、 余切、正割、余割为 x 的角。为限制反三角函数为单值函数,将反正 弦函数的值 y 限在 y=-π/2≤y≤π/2,将 y 为反正弦函数的主值,记为 y=arcsin x;相应地,反余弦函数 y=arccos x 的主值限在 0≤y≤π;反正 切函数 y=arctan x 的主值限在-π/2

反三角函数公式: arcsin(-x)=-arcsinx arccos(-x)=∏-arccosx

arctan(-x)=-arctanx arccot(-x)=∏-arccotx arcsinx+arccosx=∏/2=arctanx+arccotx sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx) 当 x∈〔—∏/2,∏/2〕时,有 arcsin(sinx)=x 当 x∈〔0,∏〕,arccos(cosx)=x x∈(—∏/2,∏/2),arctan(tanx)=x x∈(0,∏),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx 类似 若(arctanx+arctany)∈(—∏/2,∏/2),则 arctanx+arctany=arctan(x+y/1-xy)

2020-05-07

8882人浏览

三角函数与反三角函数图像性质、知识点总结

三角函数

1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值

2. 角度制与弧度制

设扇形的弧长为 l ,圆心角为 a (rad),半径为 R,面积为 S

角 a 的弧度数公式

2π×( a /360°)

角度与弧度的换算

①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3°

弧长公式 扇形的面积公式

l a R

s

1 2

lR

3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数 k 的奇偶性(k· /2+ a ) 所谓符号看象限是看原函数的象限(将 a 看做锐角,k· /2+ a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中 k z )

①:

三角 y sin x y cosx

函数

y tan x y cot x

函 数 图 象

定义域

值域 周期

R

[-1,1]

2

R

[-1,1]

2

x k

2

R

x k

R

奇偶性

2k

2

, 2k

2

2k , 2k

2k

2

, 2k

2

2k, 2k

对称轴 : x k

对称轴: x k

2

对称中心: (k , 0)

对称中心 :

(k

+

2

, 0)

零值点 x k

, x k

ymax 1

2

, x k ymin 1

2

x k

2

x 2k , ymax 1 ;

, y 2k ymin 1

k

2

,

k

2

非奇非偶

k, k

对称中心 :

( k 2

, 0)

x k

x k

2

②:函数 y Asin(x ) 的图像与性质: (1)函数 y Asin(x ) 和 y Acos(x ) 的周期都是T 2

(2)函数 y Atan(x ) 和 y Acot(x ) 的周期都是T

5.三角函数尺度变换 y sin x 经过变换变为 y A sin( x )的步骤(

2020-06-18

135人浏览

三角和反三角函数图像

六个三角函数值在每个象限的符号:

三角函数的图像和性质:

函数

y=sinx

sinα·cscα

定义域

R

值域

周期性 奇偶性

[-1,1]x=2kπ+ 时 ymax=1 2

x=2kπ-

时 ymin=-1

2

周期为 2π

奇函数

cosα·secα

y=cosx R [-1,1] x=2kπ 时 ymax=1 x=2kπ+π 时 ymin=-1

周期为 2π 偶函数

tanα·cotα

y=tanx

{x|x∈R

x≠kπ+

,k∈Z}

2

R 无最大值

无最小值

周期为 π 奇函数

y=cotx {x|x∈R 且 x≠kπ,k∈Z}

R 无最大值 无最小值

周期为 π 奇函数

单调性

名称

在[2kπ-

,2kπ+

]上都是增函数;在

2

2

[2kπ+ ,2kπ+ 2 π]上都是减函数(k∈Z)

2

3

在[2kπ-π,2kπ]上都是增函数; 在[2kπ,2kπ+π]上都是减函

在(kπ- 2

,kπ+ 2

)内都是增函数

数(k∈Z)

(k∈Z)

arcsinx

arccosx

arctanx

arccotx

反正弦函数

反余弦函数

反正切函数

在(kπ,kπ+π)内都是减函数 (k∈Z)

反余切函数

定义

y=sinx(x∈〔- , 〕) y=cosx(x∈〔0,π〕)的反函 y=tanx(x∈(- , )的反函数, y=cotx(x∈(0,π))的反函

2 2 数,叫做反余弦函数,记

22

数,叫做反余切函数,记

的反函数,叫做反正弦 作 x=arccosy

叫做反正切函数,记作

作 x=arccoty

函数,记作 x=arsiny

x=arctany

理解

arcsinx 表示属于 [- , ]

22

且正弦值等于 x 的角

arccosx 表示属于[0,π], arctanx 表示属于(- , ),且正 arccotx 表示属于(0,π)

且余弦值等于 x 的角

22

且余切值等于 x 的角

切值等于 x 的角

定义域 [-1,1]

值域 [- , ]

22

单调性

在〔-1,1〕上是增函 数

质 奇

2020-05-03

61人浏览

反三角函数图像

反三角函数图像

反三角函数图像与特征 反正弦曲线图像与特征 反余弦曲线图像与特征

拐点(同曲线对称中心): 拐点(同曲线对称中心):,该点切线斜率为 1 ,该点切线斜率为,1 反正切曲线图像与特征 反余切曲线图像与特征

拐点: 拐点(同曲线对称中心):,该点切线斜率 为 1 ,该点切线斜率为,1

渐近线: 渐近线: 名称 反正割曲线 反余割曲线 方程

图像 顶点 渐近线 反三角函数的定义域与主值范围 函数 主值记号 定义域 主值范围 反正弦 若,则 反余弦 若,则 反正切 若,则 反余切 若,则

反正割 若,则

反余割 若,则

一般反三角函数与主值的关系为 式中 n 为任意数 百科名片 是一种数学术语。反三角函数并不能狭义的理解为三角函数的反函数,是个多 值函数。它是反正弦 arcsin x,反余弦 arccos x,反正切 arctan x,反余切 arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为 x 的角。 数学术语 为限制反三角函数为单值函数,将反正弦函数的值 y 限在-π/2?y?π/2,将 y 作为反正弦函数的主值,记为 y=arcsin x;相应地,反余弦函数 y=arccos x 的主 值限在 0?y?π;反正切函数 y=arctan x 的主值限在-π/2

x 表示一个正切值为 x 的角,该角的范围在(-π/2,π/2)区间内。【图中绿线】 注释:【图的画法根据反函数的性质即:反函数图像关于 y=x

2020-05-04

66人浏览

三角和反三角函数图像

六个三角函数值在每个象限的符号: 三角函数的图像和性质:

三角、反三角函数图像

sinα·cscα

cosα·secα

tanα·cotα

函数 定义域

值域

周期性 奇偶性

单调性

y=sinx

R

[-1,1]x=2kπ+ 时 ymax=1 2

x=2kπ- 时 ymin=-1 2

y=cosx

R

[-1,1] x=2kπ 时 ymax=1 x=2kπ+π 时 ymin=-1

y=tanx

{x|x∈R 且 x≠kπ+ ,k∈Z} 2

y=cotx {x|x∈R 且 x≠kπ,k∈Z}

R 无最大值 无最小值

R 无最大值 无最小值

周期为 2π

奇函数

在[2kπ- ,2kπ+ ]上都是增函数;在

2

2

[2kπ+ ,2kπ+ 2 π]上都是减函数

2

3

(k∈Z)

周期为 2π 偶函数 在[2kπ-π,2kπ]上都是增函 数;在[2kπ,2kπ+π]上都是 减函数(k∈Z)

周期为 π

奇函数

在(kπ- ,kπ+ )内都是增函

2

2

数(k∈Z)

周期为 π 奇函数 在(kπ,kπ+π)内都是减函数 (k∈Z)

arcsinx arctanx

arccosx arccotx

名称 定义

理解 定义域

值域 性 单调性 质

奇偶性

反正弦函数

反余弦函数

反正切函数

y=sinx(x∈〔- , 〕) y=cosx(x∈〔0,π〕)的反 y=tanx(x∈(- , )的反函

2 2 函数,叫做反余弦函数,

22

的反函数,叫做反正弦 记作 x=arccosy

数,叫做反正切函数,记作

函数,记作 x=arsiny

x=arctany

arcsinx 表示属于

[- , ]

22

且正弦值等于 x 的角

arccosx 表示属于[0,π], arctanx 表示属于(- , ),且

且余弦值等于 x 的角

22

正切值等于 x 的角

[-1,1]

[-1,1]

(-∞,+∞)

[- , ]

22

[0,π]

在〔-1,1〕上是增函 在[-1,1]上是减函数

(- , )

22

在(-∞,+∞)上是增数

arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x

2020-04-15

46人浏览

三角函数及反三角函数图像性质、知识点总结

三角函数

1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值

2. 角度制与弧度制

设扇形的弧长为 l ,圆心角为 a (rad),半径为 R,面积为 S

角 a 的弧度数公式

2π×( a /360°)

角度与弧度的换算

①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈°

弧长公式 扇形的面积公式

l a R

s

1 2

lR

3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数 k 的奇偶性(k· /2+ a ) 所谓符号看象限是看原函数的象限(将 a 看做锐角,k· /2+ a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中 k z )

①:

三角 y sin x y cosx

函数

y tan x y cot x

函 数 图 象

定义域

值域 周期

R

[-1,1]

2

R

[-1,1]

2

x k

2

R

x k

R

奇偶性

2k

2

, 2k

2

2k , 2k

2k

2

, 2k

2

2k, 2k

对称轴 : x k

对称轴: x k

2

对称中心: (k , 0)

对称中心

:

(k

+

2

,

0)

零值点 x k

, x k

ymax 1

2

, x k ymin 1

2

x k

2

x 2k , ymax 1 ;

, y 2k ymin 1

②:函数 y Asin(x ) 的图像与性质:

k

2

,

k

2

非奇非偶

k, k

对称中心 :

( k 2

, 0)

x k

x k

2

(1)函数 y Asin(x ) 和 y Acos(x ) 的周期都是T 2

(2)函数 y Atan(x ) 和 y Acot(x ) 的周期都是T

5.三角函数尺度变换

y sin x 经过变换变为 y A sin( x )

2020-04-06

106人浏览

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值