1. 正弦函数 sin x, 反正弦函数 arcsin x
-
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
-
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
-
sin x = 0 ←→ arcsin x = 0
-
sin x = 1/2 ←→ arcsin x = π/6
-
sin x = √2/2 ←→ arcsin x = π/4
-
sin x = 1 ←→ arcsin x = π/2
2. 余弦函数 cos x, 反余弦函数 arccos x
-
y = cos x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = kπ 为对称轴
-
y = arccos x, x∈[–1,1], y∈[0,π]
-
cos x = 0 ←→ arccos x = π/2
-
cos x = 1/2 ←→ arccos x = π/3
-
cos x = √2/2 ←→ arccos x = π/4
-
cos x = 1 ←→ arccos x = 0
3. 正切函数 tan x, 余切函数 cot x
4. 反正切函数 arctan x, 反余切函数 arccot x
5. 余割函数 csc x
-
y = csc x = 1 / sin x,x∈(0,kπ ), y∈(–∞,–1]∪[1,∞),周期为π,当 x → kπ 时,函数的极限是无穷大 ∞
6. 正割函数 sec x
-
y = sec x = 1 / cos x,x∈( (–π/2) + kπ, (π/2) + kπ ), y∈(–∞,–1]∪[1,∞),周期为π,当 x → (π/2) + kπ 时,函数的极限是无穷大 ∞
关于反三角函数的导数