三角函数与反三角函数(图像和性质)(复习自用)

1.  正弦函数 sin x, 反正弦函数 arcsin x

  • y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴

  • y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]

  1. sin x = 0    ←→     arcsin x = 0

  2. sin x = 1/2     ←→     arcsin x = π/6

  3. sin x = √2/2    ←→     arcsin x = π/4

  4. sin x = 1    ←→     arcsin x = π/2

 

2.  余弦函数 cos x, 反余弦函数 arccos x

  • y = cos x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = kπ 为对称轴

  • y = arccos x, x∈[–1,1], y∈[0,π]

  1. cos x = 0    ←→     arccos x = π/2

  2. cos x = 1/2     ←→     arccos x = π/3

  3. cos x = √2/2    ←→     arccos x = π/4

  4. cos x = 1    ←→     arccos x = 0 

 

 3.  正切函数 tan x, 余切函数 cot x

 

4. 反正切函数 arctan x, 反余切函数 arccot x

 

5. 余割函数 csc x 

  • y = csc x = 1 / sin x,x∈(0,kπ ), y∈(–∞,–1]∪[1,∞),周期为π,当 x → kπ 时,函数的极限是无穷大 ∞

6.  正割函数 sec x 

  • y = sec x = 1 / cos x,x∈( (–π/2) + kπ, (π/2) + kπ ), y∈(–∞,–1]∪[1,∞),周期为π,当 x → (π/2) + kπ 时,函数的极限是无穷大 ∞

关于反三角函数的导数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值