背景简介
随着智能技术的发展,物联网(IoT)在医疗保健领域中的应用变得越来越广泛。特别是,智能医疗物联网(IoHT)通过引入机器智能,能够提高疾病诊断和健康监测的效率与准确性。本章专注于IoHT在步行缺陷检测中的应用,展示了如何利用智能手机中的传感器和先进的数据处理技术,来分析和识别正常与异常的步行模式。
步行缺陷检测技术
在本章中,作者详细介绍了步行缺陷检测技术的工作原理和实验过程。首先,通过在人体受试者胸部近胸骨处放置智能手机来收集运动数据,这些数据包括加速度计的Ax、Ay、Az以及陀螺仪的Gx、Gy、Gz。为了提高机器学习算法的性能,收集到的数据被进行了预处理、归一化,并被标记为“正常”或“缺陷”。实验结果表明,通过使用深度学习算法(如MLP、CNN和LSTM),系统能够以高准确率区分正常步态与有缺陷步态。
数据收集、过滤和预处理
数据收集是步行缺陷检测的第一步,其中使用了智能手机中的三轴加速度计和三轴陀螺仪。这些传感器能够捕获运动特征,并且数据以100Hz的频率记录,持续约30-35秒。为了提高算法性能,数据经过最小-最大归一化处理,并通过标记“正常”或“缺陷”来进行训练。
监督深度学习分类模型
深度学习是机器学习的一个分支,通过模拟人脑的神经元通信来处理复杂的数据模式。本章中使用了三种不同的深度学习技术:多层感知器(MLP)、卷积神经网络(CNN)和长短时记忆网络(LSTM),并将其性能与传统支持向量机(SVM)进行了对比。结果表明,CNN在检测步行缺陷方面表现最为出色。
性能评估
性能评估部分主要比较了不同机器学习和深度学习模型在步行缺陷检测中的效果。通过实验,CNN、LSTM和MLP这三种深度学习模型的准确率分别达到了91.61%、84.68%和84.25%,均优于SVM模型的71.60%。此外,CNN在检测正常和缺陷步态方面表现出较高的准确性,且对不平衡数据集的适应性强。
挑战
尽管IoHT技术在步行缺陷检测方面显示出巨大潜力,但在其广泛应用和接受方面仍面临多重挑战。本章详细讨论了包括大数据管理、数字鸿沟、监管框架、网络可靠性、隐私保护、可扩展性、能效和维护升级在内的挑战。这些挑战需要通过研究和技术创新来解决,以确保IoHT系统能够被广泛部署和接受。
总结与启发
本章展示了IoHT在智能医疗中的应用,特别是在步行缺陷检测方面的先进技术和方法。通过深入分析,我们可以看到深度学习算法在处理复杂医疗数据方面的能力。同时,面对的挑战也提醒我们,技术创新和系统优化是推动IoHT技术发展的关键因素。未来的研究应当集中在解决这些挑战,以实现更智能、更可接受的IoHT解决方案。