傅里叶变换性质证明卷积_从传统傅里叶变换到图卷积

一、为什么要研究图卷积(GCN)?

CNN只能处理 Euclidean Structure 的数据,如CV、NLP这些领域的数据,但无法处理 Non Euclidean Structure 的数据。真实世界中,大多数数据以图或者网络的形式存在,比如社交网络,知识图谱等。

f81c54578c61e273c10f340cac1baf39.png
Euclidean Structure 数据 与 Non Euclidean Structure 数据

二、CNN可以直接迁移到GCN吗?

不能。因为 Non Euclidean Structure 的数据无法保持平移不变性。具体来说,由于在拓扑图中每个顶点的相邻顶点数目都可能不同,因此无法用一个同样尺寸的卷积核来进行卷积运算。需要在图上重新设计卷积的方法,而目前图卷积方法主要分为两大类:谱方法(Spectral Methods)和 空间方法(Spatial Methods)。

谱方法 :大概思路是通过傅里叶变换等将图数据从空间域映射到谱域,然后在谱域实现卷积,最后再将处理后的信号映射回空间域。

空间方法 :在空间域直接定义卷积, 这里的卷积被定义为所有邻居结点的加权平均函数。但主要问题是由于每个结点的邻居大小不一样,很难实现参数共享。

三、传统傅里叶变换与图傅里叶变换

3.1 图拉普拉斯矩阵引入

“谱” 这个概念的时候比较抽象,确实不好理解。可以简单的认为 实际上就是对一个信号(视频,音频,图像,图)分解为一些简单元素的线性组合(小波基,图基)。如果这些分解的元素之间是线性无关的的(正交的),便可以作为信号的基。在信号处理中最常用的谱是傅里叶变换,它提供了不同频率下的正弦和余弦波作为基,从而我们可以将信号在这些基进行分解。

为了满足傅里叶变换要求, 需要找到连续的正交基对应于傅里叶变换的基。而图上的拉普拉斯矩阵恰好满足这些条件,它的特征值分解过程就是我们寻找构造图所需的正交基的过程。

  • 拉普拉斯是半正定实对称矩阵, 对称矩阵一定n个线性无关的特征向量
  • 实对称矩阵具有n个特征值,所对应的n个特征向量相互正交
  • 半正定矩阵特征值非负
  • n 阶实对称矩阵L必可对角化, 且可用正交矩阵对角化

拉普拉斯矩阵谱分解为:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值