算法分析
我们直接来分析O(n)的算法。
比如求节点F和节点H的最低公共祖先,先求出从根节点A到F的路径,再求出A到H的路径,那么最后一个相同的节点就是最低公共祖先。A->B->D->F和A->B->E->H,最后相同的节点事B,所以最低公共祖先是B节点。求根节点到指定节点的算法先前已经更新过了,复杂度是O(n),所以总的时间复杂度是O(n)。
条件细化:
(1)树如果是二叉树,而且是二叉排序树。
这中条件下可以使用二叉排序树的搜索功能找到最低公共祖先。
(2)树不是二叉排序树,连二叉树都不是,就是普通的树。
1,如果树中有指向父节点的指针。
这问题可以将问题转化为两个链表相交,求两个链表的第一个交点。
2,如果树中没有指向父节点的指针。
这问题就有点麻烦了。
具体来看获取从根节点到指定节点的函数代码:
struct BinaryNode
{
char value;
BinaryNode *left;
BinaryNode *right;
};
求跟节点到指定节点路径:
bool GetNodePath(BinaryNode *pRoot,BinaryNode *pNode,vector &v)
{
if(pRoot==NULL)
return false;
v.push_back(pRoot);
if(pRoot==pNode)
return true;
bool found=GetNodePath(pRoot->left,pNode,v);
if(!found)
found=GetNodePath(pRoot->right,pNode,v);
if(!found)
v.pop_back();
}
求最低公共祖先节点:
BinaryNode* GetCommonParent(BinaryNode *pRoot,BinaryNode *pNode1,BinaryNode *pNode2)
{
if(pRoot==NULL || pNode1==NULL || pNode2==NULL)
return NULL;
vector v1,v2;
GetNodePath(pRoot,pNode1,v1);
GetNodePath(pRoot,pNode2,v2);
BinaryNode *pLast=pRoot;
vector::iterator ite1=v1.begin();
vector::iterator ite2=v2.begin();
while(ite1!=v1.end() && ite2!=v2.end())
{
if(*ite1==*ite2)
pLast=*ite1;
ite1++;
ite2++;
}
return pLast;
}
来看一道具体的ACM题目
题目描述:
给定一棵树,同时给出树中的两个结点,求它们的最低公共祖先。
输入:
输入可能包含多个测试样例。
对于每个测试案例,输入的第一行为一个数n(0
其中每个测试样例包括两行,第一行为一个二叉树的先序遍历序列,其中左右子树若为空则用0代替,其中二叉树的结点个数node_num<10000。
第二行为树中的两个结点的值m1与m2(0
输出:
对应每个测试案例,
输出给定的树中两个结点的最低公共祖先结点的值,若两个给定结点无最低公共祖先,则输出“My God”。
样例输入:
2
1 2 4 6 0 0 7 0 0 5 8 0 0 9 0 0 3 0 0
6 8
1 2 4 6 0 0 7 0 0 5 8 0 0 9 0 0 3 0 0
6 12
样例输出:
2
My God
思路这道题我考虑的思路是
(1)后序遍历的思想,用栈保存到查找点的路径
(2)然后求两个栈第一个公共节点
AC代码
#include
#include
#define N 7000
typedef struct btree {
struct btree *lchild, *rchild;
int data;
} btree;
typedef struct stack {
int top;
btree* data[N];
} stack;
stack *first, *second;
int oneflag, secflag;
/**
* 根据前序序列递归构建二叉树
*/
void createBtree(btree **t)
{
int data;
scanf("%d", &data);
if (data == 0) {
*t = NULL;
} else {
*t = (btree *)malloc(sizeof(btree));
(*t)->data = data;
createBtree(&(*t)->lchild);
createBtree(&(*t)->rchild);
}
}
/**
* 后序遍历二叉树,构造遍历栈
*/
void postTraverse(btree *t, stack *s, int srcnum, int *flag)
{
if (t != NULL) {
btree *pre;
pre = NULL;
s->data[s->top ++] = t;
while (s->top > 0 || t) {
if (t) {
s->data[s->top ++] = t;
if (t->data == srcnum) {
*flag = 1;
break;
}
t = t->lchild;
} else {
t = s->data[-- s->top];
if (t->rchild == NULL || t->rchild == pre) {
pre = t;
t = NULL;
} else {
s->data[s->top ++] = t;
t = t->rchild;
}
}
}
}
}
/**
* 查找两个栈第一个公共元素
*
* T = O(n)
*
*/
void stackCommonData(stack *f, stack *s)
{
int top, data, flag;
top = (f->top > s->top) ? s->top : f->top;
while (top > 0) {
if (f->data[top - 1]->data == s->data[top - 1]->data) {
data = f->data[top - 1]->data;
flag = 1;
break;
} else {
top --;
}
}
if (flag) {
printf("%d\n", data);
} else {
printf("My God\n");
}
}
/**
* 清理二叉树
*
*/
void cleanBtree(btree *t)
{
if (t) {
cleanBtree(t->lchild);
cleanBtree(t->rchild);
free(t);
}
}
int main(void)
{
int n, sf, se;
btree *t;
scanf("%d", &n);
while (n --) {
createBtree(&t);
scanf("%d %d", &sf, &se);
first = (stack *)malloc(sizeof(stack));
first->top = 0;
oneflag = 0;
postTraverse(t, first, sf, &oneflag);
second = (stack *)malloc(sizeof(stack));
second->top = 0;
secflag = 0;
postTraverse(t, second, se, &secflag);
if (oneflag == 0 || secflag == 0 || first->top == 0 || second->top == 0) {
printf("My God\n");
cleanBtree(t);
continue;
} else {
stackCommonData(first, second);
cleanBtree(t);
}
}
return 0;
}
/**************************************************************
Problem: 1509
User: wangzhengyi
Language: C
Result: Accepted
Time:150 ms
Memory:110212 kb
****************************************************************/