c语言 二叉树的最小值结点,使用C语言求二叉树结点的最低公共祖先的方法

算法分析

我们直接来分析O(n)的算法。

比如求节点F和节点H的最低公共祖先,先求出从根节点A到F的路径,再求出A到H的路径,那么最后一个相同的节点就是最低公共祖先。A->B->D->F和A->B->E->H,最后相同的节点事B,所以最低公共祖先是B节点。求根节点到指定节点的算法先前已经更新过了,复杂度是O(n),所以总的时间复杂度是O(n)。

条件细化:

(1)树如果是二叉树,而且是二叉排序树。

这中条件下可以使用二叉排序树的搜索功能找到最低公共祖先。

(2)树不是二叉排序树,连二叉树都不是,就是普通的树。

1,如果树中有指向父节点的指针。

这问题可以将问题转化为两个链表相交,求两个链表的第一个交点。

2,如果树中没有指向父节点的指针。

这问题就有点麻烦了。

具体来看获取从根节点到指定节点的函数代码:

struct BinaryNode

{

char value;

BinaryNode *left;

BinaryNode *right;

};

求跟节点到指定节点路径:

bool GetNodePath(BinaryNode *pRoot,BinaryNode *pNode,vector &v)

{

if(pRoot==NULL)

return false;

v.push_back(pRoot);

if(pRoot==pNode)

return true;

bool found=GetNodePath(pRoot->left,pNode,v);

if(!found)

found=GetNodePath(pRoot->right,pNode,v);

if(!found)

v.pop_back();

}

求最低公共祖先节点:

BinaryNode* GetCommonParent(BinaryNode *pRoot,BinaryNode *pNode1,BinaryNode *pNode2)

{

if(pRoot==NULL || pNode1==NULL || pNode2==NULL)

return NULL;

vector v1,v2;

GetNodePath(pRoot,pNode1,v1);

GetNodePath(pRoot,pNode2,v2);

BinaryNode *pLast=pRoot;

vector::iterator ite1=v1.begin();

vector::iterator ite2=v2.begin();

while(ite1!=v1.end() && ite2!=v2.end())

{

if(*ite1==*ite2)

pLast=*ite1;

ite1++;

ite2++;

}

return pLast;

}

来看一道具体的ACM题目

题目描述:

给定一棵树,同时给出树中的两个结点,求它们的最低公共祖先。

输入:

输入可能包含多个测试样例。

对于每个测试案例,输入的第一行为一个数n(0

其中每个测试样例包括两行,第一行为一个二叉树的先序遍历序列,其中左右子树若为空则用0代替,其中二叉树的结点个数node_num<10000。

第二行为树中的两个结点的值m1与m2(0

输出:

对应每个测试案例,

输出给定的树中两个结点的最低公共祖先结点的值,若两个给定结点无最低公共祖先,则输出“My God”。

样例输入:

2

1 2 4 6 0 0 7 0 0 5 8 0 0 9 0 0 3 0 0

6 8

1 2 4 6 0 0 7 0 0 5 8 0 0 9 0 0 3 0 0

6 12

样例输出:

2

My God

思路这道题我考虑的思路是

(1)后序遍历的思想,用栈保存到查找点的路径

(2)然后求两个栈第一个公共节点

AC代码

#include

#include

#define N 7000

typedef struct btree {

struct btree *lchild, *rchild;

int data;

} btree;

typedef struct stack {

int top;

btree* data[N];

} stack;

stack *first, *second;

int oneflag, secflag;

/**

* 根据前序序列递归构建二叉树

*/

void createBtree(btree **t)

{

int data;

scanf("%d", &data);

if (data == 0) {

*t = NULL;

} else {

*t = (btree *)malloc(sizeof(btree));

(*t)->data = data;

createBtree(&(*t)->lchild);

createBtree(&(*t)->rchild);

}

}

/**

* 后序遍历二叉树,构造遍历栈

*/

void postTraverse(btree *t, stack *s, int srcnum, int *flag)

{

if (t != NULL) {

btree *pre;

pre = NULL;

s->data[s->top ++] = t;

while (s->top > 0 || t) {

if (t) {

s->data[s->top ++] = t;

if (t->data == srcnum) {

*flag = 1;

break;

}

t = t->lchild;

} else {

t = s->data[-- s->top];

if (t->rchild == NULL || t->rchild == pre) {

pre = t;

t = NULL;

} else {

s->data[s->top ++] = t;

t = t->rchild;

}

}

}

}

}

/**

* 查找两个栈第一个公共元素

*

* T = O(n)

*

*/

void stackCommonData(stack *f, stack *s)

{

int top, data, flag;

top = (f->top > s->top) ? s->top : f->top;

while (top > 0) {

if (f->data[top - 1]->data == s->data[top - 1]->data) {

data = f->data[top - 1]->data;

flag = 1;

break;

} else {

top --;

}

}

if (flag) {

printf("%d\n", data);

} else {

printf("My God\n");

}

}

/**

* 清理二叉树

*

*/

void cleanBtree(btree *t)

{

if (t) {

cleanBtree(t->lchild);

cleanBtree(t->rchild);

free(t);

}

}

int main(void)

{

int n, sf, se;

btree *t;

scanf("%d", &n);

while (n --) {

createBtree(&t);

scanf("%d %d", &sf, &se);

first = (stack *)malloc(sizeof(stack));

first->top = 0;

oneflag = 0;

postTraverse(t, first, sf, &oneflag);

second = (stack *)malloc(sizeof(stack));

second->top = 0;

secflag = 0;

postTraverse(t, second, se, &secflag);

if (oneflag == 0 || secflag == 0 || first->top == 0 || second->top == 0) {

printf("My God\n");

cleanBtree(t);

continue;

} else {

stackCommonData(first, second);

cleanBtree(t);

}

}

return 0;

}

/**************************************************************

Problem: 1509

User: wangzhengyi

Language: C

Result: Accepted

Time:150 ms

Memory:110212 kb

****************************************************************/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值