mnist手写数字分类的python实现_基于Tensorflow的MNIST手写数字识别分类

本文展示了如何使用Tensorflow实现MNIST手写数字识别。通过建立隐藏层和softmax层的神经网络模型,利用Adam优化器进行训练,并通过交叉熵计算损失。最终测试模型的准确性。
摘要由CSDN通过智能技术生成

本文实例为大家分享了基于Tensorflow的MNIST手写数字识别分类的具体实现代码,供大家参考,具体内容如下

代码如下:

import tensorflow as tf

import numpy as np

from tensorflow.examples.tutorials.mnist import input_data

from tensorflow.contrib.tensorboard.plugins import projector

import time

IMAGE_PIXELS = 28

hidden_unit = 100

output_nums = 10

learning_rate = 0.001

train_steps = 50000

batch_size = 500

test_data_size = 10000

#日志目录(这里根据自己的目录修改)

logdir = 'D:/Develop_Software/Anaconda3/WorkDirectory/summary/mnist'

#导入mnist数据

mnist = input_data.read_data_sets('MNIST_data', one_hot = True)

#全局训练步数

global_step = tf.Variable(0, name = 'global_step', trainable = False)

with tf.name_scope('input'):

#输入数据

with tf.name_scope('x'):

x = tf.placeholder(

dtype = tf.float32, shape = (None, IMAGE_PIXELS * IMAGE_PIXELS))

#收集x图像的会总数据

with tf.name_scope('x_summary'):

shaped_image_batch = tf.reshape(

tensor = x,

shape = (-1, IMAGE_PIXELS, IMAGE_PIXELS, 1),

name = 'shaped_image_batch')

tf.summary.i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值