linux 脚本阻塞,linux中编写自己的并发队列类(Queue 并发阻塞队列)

设计并发队列

#include

#include

using namespace std;

template

class Queue

{

public:

Queue( )

{

pthread_mutex_init(&_lock, NULL);

}

~Queue( )

{

pthread_mutex_destroy(&_lock);

}

void push(const T& data);

T pop( );

private:

list _list;

pthread_mutex_t _lock;

};

template

void Queue::push(const T& value )

{

pthread_mutex_lock(&_lock);

_list.push_back(value);

pthread_mutex_unlock(&_lock);

}

template

T Queue::pop( )

{

if (_list.empty( ))

{

throw "element not found";

}

pthread_mutex_lock(&_lock);

T _temp = _list.front( );

_list.pop_front( );

pthread_mutex_unlock(&_lock);

return _temp;

}

上述代码是有效的。但是,请考虑这样的情况:您有一个很长的队列(可能包含超过 100,000 个元素),而且在代码执行期间的某个时候,从队列中读取数据的线程远远多于添加数据的线程。因为添加和取出数据操作使用相同的互斥锁,所以读取数据的速度会影响写数据的线程访问锁。那么,使用两个锁怎么样?一个锁用于读取操作,另一个用于写操作。给出修改后的 Queue 类。

template

class Queue

{

public:

Queue( )

{

pthread_mutex_init(&_rlock, NULL);

pthread_mutex_init(&_wlock, NULL);

}

~Queue( )

{

pthread_mutex_destroy(&_rlock);

pthread_mutex_destroy(&_wlock);

}

void push(const T& data);

T pop( );

private:

list _list;

pthread_mutex_t _rlock, _wlock;

};

template

void Queue::push(const T& value )

{

pthread_mutex_lock(&_wlock);

_list.push_back(value);

pthread_mutex_unlock(&_wlock);

}

template

T Queue::pop( )

{

if (_list.empty( ))

{

throw "element not found";

}

pthread_mutex_lock(&_rlock);

T _temp = _list.front( );

_list.pop_front( );

pthread_mutex_unlock(&_rlock);

return _temp;

}

设计并发阻塞队列

目前,如果读线程试图从没有数据的队列读取数据,仅仅会抛出异常并继续执行。但是,这种做法不总是我们想要的,读线程很可能希望等待(即阻塞自身),直到有数据可用时为止。这种队列称为阻塞的队列。如何让读线程在发现队列是空的之后等待?一种做法是定期轮询队列。但是,因为这种做法不保证队列中有数据可用,它可能会导致浪费大量 CPU 周期。推荐的方法是使用条件变量,即 pthread_cond_t 类型的变量。

template

class BlockingQueue

{

public:

BlockingQueue ( )

{

pthread_mutexattr_init(&_attr);

// set lock recursive

pthread_mutexattr_settype(&_attr,PTHREAD_MUTEX_RECURSIVE_NP);

pthread_mutex_init(&_lock,&_attr);

pthread_cond_init(&_cond, NULL);

}

~BlockingQueue ( )

{

pthread_mutex_destroy(&_lock);

pthread_cond_destroy(&_cond);

}

void push(const T& data);

bool push(const T& data, const int seconds); //time-out push

T pop( );

T pop(const int seconds); // time-out pop

private:

list _list;

pthread_mutex_t _lock;

pthread_mutexattr_t _attr;

pthread_cond_t _cond;

};

template

T BlockingQueue::pop( )

{

pthread_mutex_lock(&_lock);

while (_list.empty( ))

{

pthread_cond_wait(&_cond, &_lock) ;

}

T _temp = _list.front( );

_list.pop_front( );

pthread_mutex_unlock(&_lock);

return _temp;

}

template

void BlockingQueue ::push(const T& value )

{

pthread_mutex_lock(&_lock);

const bool was_empty = _list.empty( );

_list.push_back(value);

pthread_mutex_unlock(&_lock);

if (was_empty)

pthread_cond_broadcast(&_cond);

}

并发阻塞队列设计有两个要注意的方面:

1.可以不使用 pthread_cond_broadcast,而是使用 pthread_cond_signal。但是,pthread_cond_signal 会释放至少一个等待条件变量的线程,这个线程不一定是等待时间最长的读线程。尽管使用 pthread_cond_signal 不会损害阻塞队列的功能,但是这可能会导致某些读线程的等待时间过长。

2.可能会出现虚假的线程唤醒。因此,在唤醒读线程之后,要确认列表非空,然后再继续处理。强烈建议使用基于 while 循环的 pop()。

设计有超时限制的并发阻塞队列

在许多系统中,如果无法在特定的时间段内处理新数据,就根本不处理数据了。例如,新闻频道的自动收报机显示来自金融交易所的实时股票行情,它每 n 秒收到一次新数据。如果在 n 秒内无法处理以前的一些数据,就应该丢弃这些数据并显示最新的信息。根据这个概念,我们来看看如何给并发队列的添加和取出操作增加超时限制。这意味着,如果系统无法在指定的时间限制内执行添加和取出操作,就应该根本不执行操作。

template

bool BlockingQueue ::push(const T& data, const int seconds)

{

struct timespec ts1, ts2;

const bool was_empty = _list.empty( );

clock_gettime(CLOCK_REALTIME, &ts1);

pthread_mutex_lock(&_lock);

clock_gettime(CLOCK_REALTIME, &ts2);

if ((ts2.tv_sec – ts1.tv_sec)

{

was_empty = _list.empty( );

_list.push_back(value);

}

pthread_mutex_unlock(&_lock);

if (was_empty)

pthread_cond_broadcast(&_cond);

}

template

T BlockingQueue ::pop(const int seconds)

{

struct timespec ts1, ts2;

clock_gettime(CLOCK_REALTIME, &ts1);

pthread_mutex_lock(&_lock);

clock_gettime(CLOCK_REALTIME, &ts2);

// First Check: if time out when get the _lock

if ((ts1.tv_sec – ts2.tv_sec) < seconds)

{

ts2.tv_sec += seconds; // specify wake up time

while(_list.empty( ) && (result == 0))

{

result = pthread_cond_timedwait(&_cond, &_lock, &ts2) ;

}

if (result == 0) // Second Check: if time out when timedwait

{

T _temp = _list.front( );

_list.pop_front( );

pthread_mutex_unlock(&_lock);

return _temp;

}

}

pthread_mutex_unlock(&lock);

throw "timeout happened";

}

设计有大小限制的并发阻塞队列

最后,讨论有大小限制的并发阻塞队列。这种队列与并发阻塞队列相似,但是对队列的大小有限制。在许多内存有限的嵌入式系统中,确实需要有大小限制的队列。

对于阻塞队列,只有读线程需要在队列中没有数据时等待。对于有大小限制的阻塞队列,如果队列满了,写线程也需要等待。

template

class BoundedBlockingQueue

{

public:

BoundedBlockingQueue (int size) : maxSize(size)

{

pthread_mutex_init(&_lock, NULL);

pthread_cond_init(&_rcond, NULL);

pthread_cond_init(&_wcond, NULL);

_array.reserve(maxSize);

}

~BoundedBlockingQueue ( )

{

pthread_mutex_destroy(&_lock);

pthread_cond_destroy(&_rcond);

pthread_cond_destroy(&_wcond);

}

void push(const T& data);

T pop( );

private:

vector _array; // or T* _array if you so prefer

int maxSize;

pthread_mutex_t _lock;

pthread_cond_t _rcond, _wcond;

};

template

void BoundedBlockingQueue ::push(const T& value )

{

pthread_mutex_lock(&_lock);

const bool was_empty = _array.empty( );

while (_array.size( ) == maxSize)

{

pthread_cond_wait(&_wcond, &_lock);

}

_array.push_back(value);

pthread_mutex_unlock(&_lock);

if (was_empty)

pthread_cond_broadcast(&_rcond);

}

template

T BoundedBlockingQueue::pop( )

{

pthread_mutex_lock(&_lock);

const bool was_full = (_array.size( ) == maxSize);

while(_array.empty( ))

{

pthread_cond_wait(&_rcond, &_lock) ;

}

T _temp = _array.front( );

_array.erase( _array.begin( ));

pthread_mutex_unlock(&_lock);

if (was_full)

pthread_cond_broadcast(&_wcond);

return _temp;

}

要注意的第一点是,这个阻塞队列有两个条件变量而不是一个。如果队列满了,写线程等待 _wcond 条件变量;读线程在从队列中取出数据之后需要通知所有线程。同样,如果队列是空的,读线程等待 _rcond 变量,写线程在把数据插入队列中之后向所有线程发送广播消息。如果在发送广播通知时没有线程在等待 _wcond 或 _rcond,会发生什么?什么也不会发生;系统会忽略这些消息。还要注意,两个条件变量使用相同的互斥锁。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值