python arma_python – 使用ARMA的Statsmodel

博主尝试使用Statsmodels库的ARMA模型对从Yahoo导入的Google股票数据进行预测。在确定了合适的ARMA参数并拟合模型后,遇到预测阶段的错误。错误涉及到日期处理和频率转换,具体为'NoneType'对象没有'upper'属性,这可能与数据的日期频率处理有关。
摘要由CSDN通过智能技术生成

这里有点新,但试图使用statsmodel ARMA预测工具.我从雅虎导入了一些股票数据并得到ARMA给我适合的参数.但是,当我使用预测代码时,我收到的是一个错误列表,我似乎无法弄清楚.不太确定我在这里做错了什么:

import pandas

import statsmodels.tsa.api as tsa

from pandas.io.data import DataReader

start = pandas.datetime(2013,1,1)

end = pandas.datetime.today()

data = DataReader('GOOG','yahoo')

arma =tsa.ARMA(data['Close'],order =(2,2))

results= arma.fit()

results.predict(start=start,end=end)

错误是:

---------------------------------------------------------------------------

AttributeError Traceback (most recent call last)

C:\Windows\system32\404 #elif 'mle' not in method or dynamic: # should be on a date

405 start = _validate(start,k_ar,k_diff,self.data.dates,--> 406 method)

407 start = super(ARMA,self)._get_predict_start(start)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值