(3)依次向S中加入v0 ,v1… vn-1,每加入一个顶点,对dist[i][j]进行一次修正:设S={v0 ,v1…
vk-1},加入vk,则dist(k)[i][j] = min{
dist(k-1)[i][j],dist(k-1)[i][k]+dist(k-1)[k][j]}。 dist(k)[i][j]的含义:允许中间顶点的序号最大为k时从vi到vj的最短路径长度。
dist(n-1)[i][j]就是vi到vj的最短路径长度。
import java.util.ArrayList;
import java.util.List;
public class FloydInGraph {
private static int INF=Integer.MAX_VALUE;
//dist[i][j]=INF<==>i 和 j之间没有边
private int[][] dist;
//顶点i 到 j的最短路径长度,初值是i到j的边的权重
private int[][] path;
private List< Integer> result=new ArrayList< Integer>();
public static void main(String[] args) {
FloydInGraph graph=new FloydInGraph(5);
int[][] matrix={
{INF,30,INF,10,50},
{INF,INF,60,INF,INF},
{INF,INF,INF,INF,INF},
{INF,INF,INF,INF,30},
{50,INF,40,INF,INF},
};
/* 最下面的图
int[][] matrix = {
{0 ,20,INF,INF,20,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
{20,0 ,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
{INF,30,0 ,20,INF,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
{INF,INF,20,0 ,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
{20,INF,INF,INF,0 ,10,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},
{INF,INF,30,INF,10,0 ,20,50,INF,INF,INF,INF,INF,INF,INF,INF,INF},
{INF,INF,INF,INF,INF,20,0 ,40,10,INF,INF,INF,INF,INF,INF,INF,INF},
{INF,INF,INF,INF,INF,50,40,0 ,INF,20,20,INF,INF,INF,INF,INF,INF},
{INF,INF,INF,INF,INF,INF,10,INF,0 ,20,INF,INF,INF,30,INF,INF,INF},
{INF,INF,INF,INF,INF,INF,INF,20,20,0 ,20,INF,INF,INF,INF,INF,INF},
{INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,20,INF,INF,INF,INF,INF},
{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,10,INF,INF,INF,INF},
{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,10,0 ,INF,INF,20,INF},
{INF,INF,INF,INF,INF,INF,INF,INF,30,INF,INF,INF,INF,0 ,20,INF,INF},
{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,20,INF},
{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,40},
{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,40,0 }
};
/*
int begin=0;
int end=4;
graph.findCheapestPath(begin,end,matrix);
List< Integer> list=graph.result;
System.out.println(begin+" to "+end+",the cheapest path is:");
System.out.println(list.toString());
System.out.println(graph.dist[begin][end]);
}
public void findCheapestPath(int begin,int end,int[][] matrix){
floyd(matrix);
result.add(begin);
findPath(begin,end);
result.add(end);
}
public void findPath(int i,int j){
int k=path[i][j];
if(k==-1)return;
findPath(i,k); //递归
result.add(k);
findPath(k,j);
}
public void floyd(int[][] matrix){
int size=matrix.length;
//initialize dist and path
for(int i=0;i< size;i++){
for(int j=0;j< size;j++){
path[i][j]=-1;
dist[i][j]=matrix[i][j];
}
}
for(int k=0;k< size;k++){
for(int i=0;i< size;i++){
for(int j=0;j< size;j++){
if(dist[i][k]!=INF&&
dist[k][j]!=INF&&
dist[i][k]+dist[k][j]< dist[i][j]){
dist[i][j]=dist[i][k]+dist[k][j];
path[i][j]=k;
}
}
}
}
}
public FloydInGraph(int size){
this.path=new int[size][size];
this.dist=new int[size][size];
}
}
运行结果:
0 to 4,the cheapest path is:
[0, 3, 4]
40
最短距离有三种情况: 1、两点的直达距离最短。(如下图) 2、两点间只通过一个中间点而距离最短。(图) 3、两点间用通过两各以上的顶点而距离最短。(图)
对于第一种情况:
在初始化的时候就已经找出来了且以后也不会更改到。 对于第二种情况:
弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短 对于第三种情况:
如下图的五边形,可先找一点(比如x,使=2),就变成了四边形问题,再找一点(比如y,使=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。
此图的一个运行结果:
D:\tutu>java
FloydInGraph
10 to
14,the cheapest path is:
[10,
11, 12, 15, 14]
70
import java.util.ArrayList;
import java.util.List;
public class FloydInGraph {
private static int INF=Integer.MAX_VALUE;
//dist[i][j]=INF<==>i 和 j之间没有边
private int[][] dist;
//顶点i 到 j的最短路径长度,初值是i到j的边的权重
private int[][] path;
private List< Integer> result=new ArrayList< Integer>();
public static void main(String[] args) {
FloydInGraph graph=new FloydInGraph(5);
int[][] matrix={
{INF,30,INF,10,50},
{INF,INF,60,INF,INF},
{INF,INF,INF,INF,INF},
{INF,INF,INF,INF,30},
{50,INF,40,INF,INF},
};
private static int INF=Integer.MAX_VALUE;
//dist[i][j]=INF<==>no edges between i and j
private int[][] dist;
//the distance between i and j.At first,dist[i][j] is the weight of edge [i,j]
private int[][] path;
private List result=new ArrayList();
public static void main(String[] args) {
FloydInGraph graph=new FloydInGraph(5);
int[][] matrix={
{INF,30,INF,10,50},
{INF,INF,60,INF,INF},
{INF,INF,INF,INF,INF},
{INF,INF,INF,INF,30},
{50,INF,40,INF,INF},
};
int begin=0;
int end=4;
graph.findCheapestPath(begin,end,matrix);
List list=graph.result;
System.out.println(begin+" to "+end+",the cheapest path is:");
System.out.println(list.toString());
System.out.println(graph.dist[begin][end]);
}
public void findCheapestPath(int begin,int end,int[][] matrix){
floyd(matrix);
result.add(begin);
findPath(begin,end);
result.add(end);
}
public void findPath(int i,int j){
int k=path[i][j];
if(k==-1)return;
findPath(i,k);
result.add(k);
findPath(k,j);
}
public void floyd(int[][] matrix){
int size=matrix.length;
//initialize dist and path
for(int i=0;i
for(int j=0;j
path[i][j]=-1;
dist[i][j]=matrix[i][j];
}
}
for(int k=0;k
for(int i=0;i
for(int j=0;j
if(dist[i][k]!=INF&&
dist[k][j]!=INF&&
dist[i][k]+dist[k][j]dist[i][j]-->longestPath
dist[i][j]=dist[i][k]+dist[k][j];
path[i][j]=k;
}
}
}
}
}
public FloydInGraph(int size){
this.path=new int[size][size];
this.dist=new int[size][size];
}
}