java 二维数组 floyd_弗洛伊德(Floyd)算法求任意两点间的最短距离(JAVA)

本文介绍了使用Java实现Floyd_弗洛伊德算法来找到图中任意两点之间的最短路径。通过二维数组表示图的边权,并逐步更新中间顶点为k的最短路径。最后展示了一个具体的例子和运行结果,展示了如何找到从顶点0到顶点4的最短路径及其长度。
摘要由CSDN通过智能技术生成

(3)依次向S中加入v0 ,v1… vn-1,每加入一个顶点,对dist[i][j]进行一次修正:设S={v0 ,v1…

vk-1},加入vk,则dist(k)[i][j] = min{

dist(k-1)[i][j],dist(k-1)[i][k]+dist(k-1)[k][j]}。 dist(k)[i][j]的含义:允许中间顶点的序号最大为k时从vi到vj的最短路径长度。

dist(n-1)[i][j]就是vi到vj的最短路径长度。

a4c26d1e5885305701be709a3d33442f.png

import java.util.ArrayList;

import java.util.List;

public class FloydInGraph {

private static int INF=Integer.MAX_VALUE;

//dist[i][j]=INF<==>i 和 j之间没有边

private int[][] dist;

//顶点i 到 j的最短路径长度,初值是i到j的边的权重

private int[][] path;

private List< Integer> result=new ArrayList< Integer>();

public static void main(String[] args) {

FloydInGraph graph=new FloydInGraph(5);

int[][] matrix={

{INF,30,INF,10,50},

{INF,INF,60,INF,INF},

{INF,INF,INF,INF,INF},

{INF,INF,INF,INF,30},

{50,INF,40,INF,INF},

};

/* 最下面的图

int[][] matrix = {

{0 ,20,INF,INF,20,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},

{20,0 ,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},

{INF,30,0 ,20,INF,30,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},

{INF,INF,20,0 ,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},

{20,INF,INF,INF,0 ,10,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF},

{INF,INF,30,INF,10,0 ,20,50,INF,INF,INF,INF,INF,INF,INF,INF,INF},

{INF,INF,INF,INF,INF,20,0 ,40,10,INF,INF,INF,INF,INF,INF,INF,INF},

{INF,INF,INF,INF,INF,50,40,0 ,INF,20,20,INF,INF,INF,INF,INF,INF},

{INF,INF,INF,INF,INF,INF,10,INF,0 ,20,INF,INF,INF,30,INF,INF,INF},

{INF,INF,INF,INF,INF,INF,INF,20,20,0 ,20,INF,INF,INF,INF,INF,INF},

{INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,20,INF,INF,INF,INF,INF},

{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,10,INF,INF,INF,INF},

{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,10,0 ,INF,INF,20,INF},

{INF,INF,INF,INF,INF,INF,INF,INF,30,INF,INF,INF,INF,0 ,20,INF,INF},

{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,0 ,20,INF},

{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,20,INF,20,0 ,40},

{INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,INF,40,0 }

};

/*

int begin=0;

int end=4;

graph.findCheapestPath(begin,end,matrix);

List< Integer> list=graph.result;

System.out.println(begin+" to "+end+",the cheapest path is:");

System.out.println(list.toString());

System.out.println(graph.dist[begin][end]);

}

public  void findCheapestPath(int begin,int end,int[][] matrix){

floyd(matrix);

result.add(begin);

findPath(begin,end);

result.add(end);

}

public void findPath(int i,int j){

int k=path[i][j];

if(k==-1)return;

findPath(i,k);  //递归

result.add(k);

findPath(k,j);

}

public  void floyd(int[][] matrix){

int size=matrix.length;

//initialize dist and path

for(int i=0;i< size;i++){

for(int j=0;j< size;j++){

path[i][j]=-1;

dist[i][j]=matrix[i][j];

}

}

for(int k=0;k< size;k++){

for(int i=0;i< size;i++){

for(int j=0;j< size;j++){

if(dist[i][k]!=INF&&

dist[k][j]!=INF&&

dist[i][k]+dist[k][j]< dist[i][j]){

dist[i][j]=dist[i][k]+dist[k][j];

path[i][j]=k;

}

}

}

}

}

public FloydInGraph(int size){

this.path=new int[size][size];

this.dist=new int[size][size];

}

}

运行结果:

0 to 4,the cheapest path is:

[0, 3, 4]

40

最短距离有三种情况: 1、两点的直达距离最短。(如下图) 2、两点间只通过一个中间点而距离最短。(图) 3、两点间用通过两各以上的顶点而距离最短。(图)

对于第一种情况:

在初始化的时候就已经找出来了且以后也不会更改到。 对于第二种情况:

弗洛伊德算法的基本操作就是对于每一对顶点,遍历所有其它顶点,看看可否通过这一个顶点让这对顶点距离更短 对于第三种情况:

如下图的五边形,可先找一点(比如x,使=2),就变成了四边形问题,再找一点(比如y,使=2),可变成三角形问题了(v,u,w),也就变成第二种情况了,由此对于n边形也可以一步步转化成四边形三角形问题。(这里面不用担心哪个点要先找哪个点要后找,因为找了任一个点都可以使其变成(n-1)边形的问题)。

a4c26d1e5885305701be709a3d33442f.png

a4c26d1e5885305701be709a3d33442f.png

此图的一个运行结果:

D:\tutu>java

FloydInGraph

10 to

14,the cheapest path is:

[10,

11, 12, 15, 14]

70

import java.util.ArrayList;

import java.util.List;

public class FloydInGraph {

private static int INF=Integer.MAX_VALUE;

//dist[i][j]=INF<==>i 和 j之间没有边

private int[][] dist;

//顶点i 到 j的最短路径长度,初值是i到j的边的权重

private int[][] path;

private List< Integer> result=new ArrayList< Integer>();

public static void main(String[] args) {

FloydInGraph graph=new FloydInGraph(5);

int[][] matrix={

{INF,30,INF,10,50},

{INF,INF,60,INF,INF},

{INF,INF,INF,INF,INF},

{INF,INF,INF,INF,30},

{50,INF,40,INF,INF},

};

private static int INF=Integer.MAX_VALUE;

//dist[i][j]=INF<==>no edges between i and j

private int[][] dist;

//the distance between i and j.At first,dist[i][j] is the weight of edge [i,j]

private int[][] path;

private List result=new ArrayList();

public static void main(String[] args) {

FloydInGraph graph=new FloydInGraph(5);

int[][] matrix={

{INF,30,INF,10,50},

{INF,INF,60,INF,INF},

{INF,INF,INF,INF,INF},

{INF,INF,INF,INF,30},

{50,INF,40,INF,INF},

};

int begin=0;

int end=4;

graph.findCheapestPath(begin,end,matrix);

List list=graph.result;

System.out.println(begin+" to "+end+",the cheapest path is:");

System.out.println(list.toString());

System.out.println(graph.dist[begin][end]);

}

public  void findCheapestPath(int begin,int end,int[][] matrix){

floyd(matrix);

result.add(begin);

findPath(begin,end);

result.add(end);

}

public void findPath(int i,int j){

int k=path[i][j];

if(k==-1)return;

findPath(i,k);

result.add(k);

findPath(k,j);

}

public  void floyd(int[][] matrix){

int size=matrix.length;

//initialize dist and path

for(int i=0;i

for(int j=0;j

path[i][j]=-1;

dist[i][j]=matrix[i][j];

}

}

for(int k=0;k

for(int i=0;i

for(int j=0;j

if(dist[i][k]!=INF&&

dist[k][j]!=INF&&

dist[i][k]+dist[k][j]dist[i][j]-->longestPath

dist[i][j]=dist[i][k]+dist[k][j];

path[i][j]=k;

}

}

}

}

}

public FloydInGraph(int size){

this.path=new int[size][size];

this.dist=new int[size][size];

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值