matlab牛顿解方程,牛顿迭代法解非线性方程matlab实现

该程序使用牛顿迭代法在MATLAB中求解实系数高次代数方程的根。它展开方程的泰勒级数并取线性部分进行迭代,直到达到设定的精度或达到最大迭代次数。示例展示了求解方程x^3 + 2x^2 + 10x - 20 = 0的根,最终得到的根约为1.3688。
摘要由CSDN通过智能技术生成

1

.功能

本程序采用牛顿法,求实系数高次代数方程

f(x)=a0xn+a1xn-1+

…+an-1x+an=

0 (an

≠0

)

(

1

)

的在初始值

x

0

附近的一个根。

2.

使用说明

(1)函数语句

Y=NEWTON_1(A,N,X0,NN,EPS1)

调用

M

文件

newton_1.m

(

2

)参数说明

A    n+1

元素的一维实数组,输入参数,按升幂存放方程系数。

N

整变量,输入参数,方程阶数。

X0

实变量,输入参数,初始迭代值。

NN

整变量,输入参数,允许的最大迭代次数。

EPS1

实变量,输入参数,控制根的精度。

3

.方法简介

解非线性议程

f(x)=0

的牛顿法是把非线性方程线性化的一种近似方法。把

f(x)

x0

附近展开成泰勒级数

f(x)=f(x0)+(x-x0)fˊ(x0)+(x-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值