一、算法原理
1. 牛顿方法的算法原理
牛顿方法(Newton’s Method),也称为牛顿-拉弗森方法,是一种用于数值求解非线性方程的迭代方法。其基本思想是通过不断迭代来逼近方程的根,具体原理如下:
输入:要求解的非线性方程 f ( x ) = 0 f(x) = 0 f(x)=0,以及初始猜测值 x 0 x_0 x0。
输出:近似根 x ∗ x^* x∗。
- 初始化 x 0 x_0 x0 作为初始猜测值。
- 进行迭代:
- 计算 f ( x k ) f(x_k) f(xk) 和 f ′ ( x k ) f'(x_k) f′(xk),其中 f ( x k ) f(x_k) f(xk) 是目标函数在当前猜测值 x k x_k xk 处的值, f ′ ( x k ) f'(x_k) f′(xk) 是目标函数的导数在同一点的值。
- 计算更新步骤: x k +