保留小数点后几位_从“1.254的积是几位小数?”谈起~

【问题缘起】 周一升旗仪式时,遇资深数学老师兰大姐问:“一个选择题,1.25×4的积是几位小数?大家争论的不可开交,也不知道选哪个?” 我一怔,并没有明确给出自己的观点:“命题时应尽量规避这种题目。” 旁边的姚老师补到:“这个积想说几位小数就是几位小数。” 太有道理了,顿时觉得数学老师真的好无聊…… 【我的分析】 1.25×4若按小数乘法计算法则考量,因数中一共有两位小数,则积也是两位小数,但若计算出答案5.00,再利用小数的性质去掉小数末尾的0,即可化简为5。 那么争论的焦点就在于积到底是两位小数还是整数? 这样的争论与讨论可以说每年九月初在五年级的数学老师和学生当中都会上演,也够他们纠结一阵子的,往往随着学习的推进最终不了了之,似乎都有道理,但也无关大局,无关紧要,也就无所谓了。 带着问题我抽时间再次翻阅了人教五年级数学上册教材,虽然教材中并不能找到明确答案,但也发现了些许端倪:

f120057d982d10f103ee1f041ed91f9a.png

“做一做”最后一道算式0.45×0.6,就是末尾有0的,这四个算式放在一起,然后让学生说说“观察例题3和上面各题中因数与积的小数位数,你能发现什么?”显然,这意味着0.45×0.6的规律和前面三个算式的规律是一致的。   再者,教材中总结法则是这样叙述的: 1.先按整数乘法算出积,再点小数点; 2.点小数点时,看因数中一共有几位小数,就从积的右边数出几位,点上小数点。 由此可见:积的小数位数应该是在化简之前确定的! 随后我又网搜了数学主流教材北师大版和苏教版两个版本的教材,希望能进一步来印证。 北师大版:(四下)

a8702763e9dfb018e7a23d1b56659f72.png

苏教版(五下):

95165ead52e33b0c87e677349d190e13.png

通过对比,北师大版教材并没有明确的素材与表达来进行印证,而苏教版教材相对来说是最明显的,干脆例题就直接选取积的末尾有0的算式3.2×1.15。 而且在算毕后继续追问“两个乘数的小数位数与积的小数位数有什么联系”,并且明确指出:“ 乘数中一共有几位小数,积就有几位小数 ”。不言而喻,即使是末尾有0的算式,依然符合这样的规律,不需要消0化简后再研究几位小数。 由此,无论是对小数意义的分析,还是对三个版本教材的编写意图分析,都说明小数的性质只是为了积的简洁。也就是说兰老师所问 1.25×4的积是两位小数 。 类似的,“两位小数与一位小数相乘的积,一定是三位小数”这样的结论似乎也是没毛病的。 换言之,小数乘法计算后若发现积的末尾有0,依据小数的性质,可以把末尾的0去掉以达到化简目的,但 绝不能因为去掉0而否认了积的小数位数与乘数的小数位数之间的关 系! 也就是说积的小数位数的确定应该建立在“不计算”的基础上! 我们再换个角度理解: 如果积的末尾有零,一般分两步:1.按小数乘法法则算出“初始积”;2.对小数进行化简,得到“最终积”。如计算1.25×4,首先求得5.00(初始积,有两位小数),再对5.00进行简化处理得到5(最终积,整数)。 在学习小数乘法时,教师或者一些习题资料中常常让学生通过判断积的小数位数检验学生是否掌握了小数乘法的方法,或者检测学生对小数性质的理解。 但是,相关表述往往指向性不是很明确,如判断题“两位小数乘一位小数,积是三位小数”,或填空题、选择题“1.25×4的积是()位小数”。 换言之,我们往往无法从题目信息判断“积”是指“初始积”(如5.00)还是指“最终积”(如5)。如果指初始积,那么“两位小数乘一位小数,积是三位小数”是对的,“1.25×4的积是(  )位小数”应该填“两”;如果指最终积,那么“两位小数乘一位小数,积一定是三位小数”是错的,“1.25× 4的积是(  )位小数”应该填“0”。可见,对“积”的理解不同,其结果也就不同。 实际上,小数乘法计算应重点让学生在具体的情境中掌握小数乘法计算法则并对结果进行化简,不宜死记硬背一些结论,更不能拿有歧义的习题考查学生。若一定要考查学生对小数位数规律的掌握情况,应该排除歧义。 以上述题目为例:判断题改为“两位小数乘一位小数,最终的积一定是三位小数。”通过“最终的积”“一定”两个词强化指向化简后的最终积;将判断积是几位小数的填空题、判断题改为较复杂数据,降低学生计算后再判断是几位小数的可能性,从而直指数学本质规律的考查,而且最好通过积的末位不是0的题目考查避免使学生甚至教师陷入不必要的纠结中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值