java半数集问题_初学ACM - 半数集(Half Set)问题 NOJ 1010 / FOJ 1207

题目重述:

问题描述

要求找出具有下列性质数的个数(包含输入的自然数n):

先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理:

1. 不作任何处理;

2. 在它的左边加上一个自然数,但该自然数不能超过原数的一半;

3. 加上数后,继续按此规则进行处理,直到不能再加自然数为止.

输入

一个自然数n

输出

一个数,表示满足条件的数的个数

样例输入

6

样例输出

6

提示

样例说明:满足条件的数是6,16,26,126,36,136

假设不考虑重复的情况,那么采用下面公式即可:

1a9a33e517d09415d1d170ab790e5337.png

只需要一个数组,很容易写出下面这个程序:

#include 

#include 

using namespace std;

int ans[100005];

int main()

{

int n;

cin>>n;

for(int i=0; i<=n; i++)

ans[i] = 1;

for(int i=2; i<=n; i++)

{

for(int j=1; j<=i/2; j++)

ans[i] += ans[j];

}

cout<

return 0;

}

这个程序已经可以AC南京邮电大学OJ的测试数据了,但却过不去FOJ 1207,原因是没有考虑重复生成的情况。

下面我们来看一个重复生成的情况:

60-(添加24)>2460-(添加1)>12460和60-(添加4)>460-(添加2)>2460-(添加1)>12460

也就是说,set(j/10)中的部分元素已经在 set(j%10)中生成了,而判断条件就是 j>10&&(j/10<=((j%10)/2))

按照这个思路,改进一下程序:

#include 

#include 

using namespace std;

int ans[100005];

int main()

{

int n;

while(cin>>n)

{

for(int i=0; i<=n; i++)

ans[i] = 1;

for(int i=2; i<=n; i++)

{

for(int j=1; j<=i/2; j++)

{

ans[i] += ans[j];

if (j>10&&(j/10<=((j%10)/2)))

{

ans[i] -= ans[j/10];

}

}

}

cout<

}

return 0;

}

稳稳的AC~

附上递归函数:

int numofSet(int n)

{

int ans=1;

if(a[n]>1 || n==1)

return a[n];

for(int i=1;i<=n/2;i++)

{

ans+=numofSet(i);

if(i>10&&(i/10<=((i%10)/2)))     //剔除重复元素的判断语句

ans-=a[i/10];

}

a[n]=ans;

return ans;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值