Can anyone recommend a Bayesian belief network classifier implemented in Python that can generate a probability of belief based on the input of a sparse network describing a series of facts about several inter-related objects?
e.g. given the facts "X is hungry, is a monkey and eats" formulated in FOL like:
isHungry(x) ^ isMonkey(x) ^ eats(x,y)
as well as a training corpus like:
isHungry(a) ^ isMonkey(a) ^ eats(a,b) => true
isHungry(b) ^ ~isMonkey(b) ^ eats(b,c) => true
isMonkey(d) ^ eats(d,e) => true
isMonkey(f) ^ eats(f,g) => false
isMonkey(h) ^ ~eats(h,i) => true
isBanana(j) ^ ~eats(j,k) => true
I'd like to train a Bayesian belief network on the corpus, and use it to estimate the belief probability of the facts.
Note, I'm not talking about Naive Bayesian text classifiers.
解决方案
The Python Bayes Network Toolbox would be a good starting point.
In addition, there is this more generic Bayesian inference tools package, named bayespy.
Hth.
博客内容涉及使用Python进行贝叶斯信念网络(Bayesian Belief Network, BBN)的学习和应用。推荐了Python BayesNetwork Toolbox和bayespy这两个库来构建和训练模型,以处理基于事实的稀疏网络,并进行概率信念估计。示例中给出了训练数据集,用于训练BBN并预测对象间关系的概率。
685

被折叠的 条评论
为什么被折叠?



