pandas.pivot_table用于支持数据分析,并帮助您创建类似于excel的透视表,而不是读取excel透视表。在Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame
文档中的示例>>> df
A B C D
0 foo one small 1
1 foo one large 2
2 foo one large 2
3 foo two small 3
4 foo two small 3
5 bar one large 4
6 bar one small 5
7 bar two small 6
8 bar two large 7
>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
small large
foo one 1 4
two 6 NaN
bar one 5 4
two 6 7
现在为了帮助您解决这个问题,我创建了一个示例数据集和一个透视表。在
然后将excel表读入pandas dataframe。此数据帧包含要使用df.fillna(method='ffill')替换的nan
^{pr2}$
输出Sports Name Address Age
0 basketball Abhijit 129 ABC 20
1 basketball Rajesh 128 ABC 20
2 Cricket Mahesh 123 ABC 20
3 Cricket Ramesh 126 ABC 20
4 Cricket Suresh 124 ABC 20
5 Football Riyash 125 ABC 20
6 Football suraj 127 ABC 20