一.背景呈现
近几年中考命题中,由一些古老的数学问题改编的试题屡见不鲜,如将军饮马,胡不归,阿氏圆,费马问题等。这些题型如果在平时没有进行过练习,要想在考试有限的时间内完成,基本上是不可能的,这就要求我们对这些问题进行研究,对一些思路或基本结论相同的数学问题进行模型提炼,不断总结归纳,使相互联系的数学知识系统化,模块化,在模型识别,一题多变的过程中,提升我们的思维活跃度。
二.六大模型
1. 如图,直线l和的异侧两点A,B,在直线l上求作一点P,使PA+PB最小。
2. 如图,直线l和的同侧两点A,B,在直线l上求作一点P,使PA+PB最小。
3. 如图,点P是∠MON内一点,分别在OM,ON上求作点A,B,使△PAB的周长最小。
4. 如图,点P,Q是∠MON内两点,分别在OM,ON上求作点A,B,使四边形PQAB的周长最小。
5. 如图,点A是∠MON外一点,在ON上求作点P,使PA与点P到OM的距离之和最小。
6. 如图,点A是∠MON内一点,在ON上求作点P,使PA与点P到OM的距离之和最小。
三.涉及知识
两点之间线段最短,垂线段最短,三角形三边之间关系,轴对称,平移等。
四.解题思路
找对称点,实现折转直。
五.试题解读
1.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,求PA+PB的最小值.
关键:找对称点。
作法:作点A关于MN的对称点C,由圆对称性知点C在⊙O上,交MN于点Q即为所要寻找的点,当P运动到Q点处,PA+PB取最小值,且最小值等于BC。
原理:两点之间线段最短。
解:连接OC,OB,BC,则△OBC是等腰直角三角形,所以PA+PB=PB+PC==PC=根号2OA=4根号2。
2. 如图,矩形ABCD中,AB=10,BC=20,E为BC边上的一个动点,P为BD边上的一个动点,求PC+PE的最小值。
关键:找对称点。
作法:作点BC关于BD的对称绝线段BG,过G作GH⊥BC于H,交BD于Q,当P,E分别运动到Q,H时,PC+PE取最小值,且最小值等于GH。
原理:垂线段最短。
解:直角三角形BCD中,得BD=10根号5 ,由BC*CD=BD*CF,得CF=4根号5 ,直角三角形BCF中,BF=8根号5,由CG*BF=BC*GH,GH=16。
六.练习巩固
1.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5点P为BC上一个动点,当PA+PD取最小值时,求△APD中AP上的高。
2.如图,一元二次方程x2+2x﹣3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6).
(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.



壹伴图文工具箱
文章工具
采集图文
合成多图文
生成长图
采集样式
查看封面
用户
初中数学培训与提高,
微信 | zzdhyy0603微博 |周老师工作坊