三角形周长最短问题_[周老师工作坊]数学动点最值:将军饮马问题

本文探讨了中考中常见的数学问题,如将军饮马问题,提出了六个模型来解决三角形周长最短的问题。通过找对称点、利用轴对称和平移等方法,解释了如何在不同情况下找到周长最小的路径。同时,介绍了涉及的知识点,如两点之间线段最短、垂线段最短等,并提供了相关习题以巩固理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c455fb62d3e07a9ab17bf00bb73f824c.png

一.背景呈现

近几年中考命题中,由一些古老的数学问题改编的试题屡见不鲜,如将军饮马,胡不归,阿氏圆,费马问题等。这些题型如果在平时没有进行过练习,要想在考试有限的时间内完成,基本上是不可能的,这就要求我们对这些问题进行研究,对一些思路或基本结论相同的数学问题进行模型提炼,不断总结归纳,使相互联系的数学知识系统化,模块化,在模型识别,一题多变的过程中,提升我们的思维活跃度。

二.六大模型

1. 如图,直线l和的异侧两点A,B,在直线l上求作一点P,使PA+PB最小。

2. 如图,直线l和的同侧两点A,B,在直线l上求作一点P,使PA+PB最小。

3. 如图,点P是∠MON内一点,分别在OM,ON上求作点A,B,使△PAB的周长最小。   

4febe4cbadb6c77487e06073df8528e2.png

4. 如图,点P,Q是∠MON内两点,分别在OM,ON上求作点A,B,使四边形PQAB的周长最小。

5. 如图,点A是∠MON外一点,在ON上求作点P,使PA与点P到OM的距离之和最小。

6. 如图,点A是∠MON内一点,在ON上求作点P,使PA与点P到OM的距离之和最小。  

31804b061fead4ecbbf4bda4f3e46643.png

三.涉及知识

两点之间线段最短,垂线段最短,三角形三边之间关系,轴对称,平移等。

四.解题思路

找对称点,实现折转直。

五.试题解读

1.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,求PA+PB的最小值.

54220a8c07209586c6a7e229c20cf3b0.png

关键:找对称点。

作法:作点A关于MN的对称点C,由圆对称性知点C在⊙O上,交MN于点Q即为所要寻找的点,当P运动到Q点处,PA+PB取最小值,且最小值等于BC。

原理:两点之间线段最短。

解:连接OC,OB,BC,则△OBC是等腰直角三角形,所以PA+PB=PB+PC==PC=根号2OA=4根号2。

2. 如图,矩形ABCD中,AB=10,BC=20,E为BC边上的一个动点,P为BD边上的一个动点,求PC+PE的最小值。

ef6d529b7af0dbd42455b5fab5dc0a8d.png

关键:找对称点。

作法:作点BC关于BD的对称绝线段BG,过G作GH⊥BC于H,交BD于Q,当P,E分别运动到Q,H时,PC+PE取最小值,且最小值等于GH。

原理:垂线段最短。

解:直角三角形BCD中,得BD=10根号5 ,由BC*CD=BD*CF,得CF=4根号5 ,直角三角形BCF中,BF=8根号5,由CG*BF=BC*GH,GH=16。

六.练习巩固

1.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5点P为BC上一个动点,当PA+PD取最小值时,求△APD中AP上的高。

e9a956dde76f2bfe003753fb7abc04db.png

2.如图,一元二次方程x2+2x﹣3=0的二根x1x2(x1x2)是抛物线yax2+bx+cx轴的两个交点BC的横坐标,且此抛物线过点A(3,6).

(1)求此二次函数的解析式;

(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;

(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标.

6dfd0cfedc76746503a8ff7d760b6c04.png

全国各地的中考经常会出现将军饮马的试题,如无锡14年,安徽19年,内江20年,河南20年等,有需求的同学可以寻找练习。对本专题有兴趣的可点关注并转发,加我微信好友索要文档资料。

5f046f9b1c3ed1ee9c62be4b56e45c09.png

05bb3a4caca0e929d473295ee24ed78b.png初中 数学培训与提高微信 | zzdhyy0603。微博 |周老师工作坊 e99832abb8305230881613d7c5f84b4f.png 757a8589734f9d366917c1868702799a.gif

壹伴图文工具箱

文章工具

采集图文

合成多图文

生成长图

采集样式

查看封面

用户

初中数学培训与提高,

微信 | zzdhyy0603微博 |周老师工作坊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值