写在前面
已经21世纪,会不会还有人说没有数据质量管理平台,数据治理我干不了!没有元数据管理平台,数据治理干不了!没有主数据管理平台,数据治理我干不了!想想武侠中的高手,用树脂当剑同样可以剑气逼人,杀人于无形!武侠中的剑客用树枝也能杀人,是因为内力(规则)和招式(方法)已炉火纯青。数据治理同理:没有平台时,用制度、协作和现有工具的组合拳,依然可以破局。
一、没有平台如何治理主数据
1. 核心逻辑:主数据管理 = 标准共识 + 人工管控
主数据的核心是唯一性、权威性、共享性。无平台时,重点在于建立规则和人工协作机制:
- 低成本解法:
✅ 人工指定Owner:明确每个主数据领域(如客户、供应商)的责任部门,例如财务部管供应商主数据,销售部管客户主数据。
✅ Excel+审批流:用Excel维护主数据清单,通过OA系统设置变更审批流程(如新增客户需销售总监签字)。
✅ 定期人工稽核:每月由数据治理小组抽查主数据重复率、字段完整性,结果通报至管理层。
✅ 强制命名规范:例如客户编码=区域缩写+行业代码+流水号(BJ-RT-001),用规则规避混乱。
2. 案例:某制造业企业无主数据平台的操作
① 定义主数据范围:物料、供应商、客户三类;
② 物料主数据由采购部维护,采用"品类+规格+材质"的层级编码规则(如METAL-BOLT-M10-STEEL);
③ 每周由IT导出ERP主数据清单,人工比对Excel基准表,标记异常数据;
④ 异常数据邮件流转至责任部门,24小时内必须修正。
结果: 主数据重复率从37%降至8%,且未购买任何平台。
看到没有,EXCEL也可以治理主数据,要是在线版EXCEL就更棒了
二、没有平台如何治理元数据
1. 核心逻辑:元数据即数据的「说明书」——说明书未必要装订成册
元数据管理的本质是记录上下文,关键在于低成本留存关键信息:
- 低成本解法:
✅ Wiki/共享文档:用Confluence或腾讯文档建立企业数据字典,记录每个字段的定义、来源、更新规则。
✅ 字段注释硬编码:在数据库表结构设计阶段,强制要求开发人员在SQL脚本中添加字段注释(如:COMMENT ON COLUMN user_table.mobile IS '用户手机号,加密存储'
)。
✅ 邮件归档制度:数据口径变更时,必须通过邮件通知所有相关方,邮件自动归档为证据链。
✅ 血缘分析土法:用Python脚本解析SQL日志,生成数据加工流程图(参考开源工具Apache Atlas基础功能)。
2. 案例:某电商公司手工元数据管理
① 所有数据报表的取数逻辑必须附在邮件正文发送;
② 核心Hive表字段注释率达到100%,新表无注释不准上线;
③ 用ProcessOn绘制关键数据链路图,每季度更新;
④ 建立"元数据值班员"轮岗制,由数据分析师兼任答疑。
效果: 数据需求响应速度提升40%,新人培训周期缩短2周。
元数据:数据的数据,利用工具把注释描述好,就是元数据治理好
三、没有平台如何提升数据质量
1. 核心逻辑:数据质量 = 检查点 + 责任制 + 文化渗透
与其依赖平台自动检测,不如让业务方成为数据质量的利益共同体:
- 低成本解法:
✅ 业务自查清单:设计《数据录入必填字段清单》,例如客户地址必须到区级,否则无法提交订单。
✅ SQL质量监控:用定时任务跑简单查询(如SELECT COUNT(*) FROM order WHERE amount IS NULL
),结果邮件报警。
✅ 反向考核机制:数据质量指标(如供应商信息完整率)纳入采购部KPI,与绩效奖金挂钩。
✅ 群众举报奖励:员工发现数据错误可提报,核实后奖励积分(可兑换礼品)。
2. 案例:某物流公司数据质量实战
① 干线运输表必须包含「司机ID+车牌号」,否则调度系统拒绝派单;
② 每日晨会通报前日数据错误Top3(如运单目的地字段缺失);
③ 用Python+Flask开发简易数据质量看板(代码量<500行),展示各部门数据得分;
④ 设立"数据质量红旗榜",月度冠军部门额外奖励团建经费。
效果: 运单数据错误率3个月内从22%降至5%。
有平台的数据质量管理,也可以简单看成规则控制,但是质量管理事前、事中、事后,平台的作用不一定有机制的作用大
四、从游击队到正规军:如何低成本过渡到平台化?
1. 工具替代方案
治理领域 | 商业平台 | 零成本替代方案 |
---|---|---|
主数据 | Informatica MDM | Excel+OA审批流+Python去重脚本 |
元数据 | Collibra | Confluence文档+SQL注释+邮件归档 |
数据质量 | Talend DQ | SQL检查脚本+钉钉机器人报警 |
2. 终极心法:用「人治」换时间,用「规则」换空间
- 人治阶段(0-1年): 通过制度设计让员工被迫关注数据质量(如错误数据导致业务停摆)。
- 半自动化(1-2年): 用开源工具(如Apache Griffin)替代手工检查,降低人力成本。
- 平台化(2年+): 当治理文化成熟后,采购/自研平台解决规模化问题。
总结:高手无剑胜有剑,治理无台亦有道
数据治理的核心矛盾从来不是「有没有平台」,而是「愿不愿建立规则」和「能不能坚持执行」。
- 短期: 用制度和现有工具建立最小可行治理框架;
- 长期: 用治理成果倒逼平台建设(案例:某银行通过手工治理证明ROI后,成功立项采购数据中台)。
记住: 最危险的从来不是没有工具,而是用工具掩盖治理不作为——如同给弓箭手配了最先进的弩,他却从来不瞄准。