你真的会干数据治理吗?实操解析

写在前面

已经21世纪,会不会还有人说没有数据质量管理平台,数据治理我干不了!没有元数据管理平台,数据治理干不了!没有主数据管理平台,数据治理我干不了!想想武侠中的高手,用树脂当剑同样可以剑气逼人,杀人于无形!武侠中的剑客用树枝也能杀人,是因为内力(规则)和招式(方法)已炉火纯青。数据治理同理:‌没有平台时,用制度、协作和现有工具的组合拳,依然可以破局‌。

一、没有平台如何治理主数据

1. 核心逻辑:主数据管理 = 标准共识 + 人工管控

主数据的核心是‌唯一性、权威性、共享性‌。无平台时,重点在于建立规则和人工协作机制:

  • 低成本解法:
    ✅ ‌人工指定Owner‌:明确每个主数据领域(如客户、供应商)的责任部门,例如财务部管供应商主数据,销售部管客户主数据。
    ✅ ‌Excel+审批流‌:用Excel维护主数据清单,通过OA系统设置变更审批流程(如新增客户需销售总监签字)。
    ✅ ‌定期人工稽核‌:每月由数据治理小组抽查主数据重复率、字段完整性,结果通报至管理层。
    ✅ ‌强制命名规范‌:例如客户编码=区域缩写+行业代码+流水号(BJ-RT-001),用规则规避混乱。

2. 案例:某制造业企业无主数据平台的操作

① 定义主数据范围:物料、供应商、客户三类;
② 物料主数据由采购部维护,采用"品类+规格+材质"的层级编码规则(如METAL-BOLT-M10-STEEL);
③ 每周由IT导出ERP主数据清单,人工比对Excel基准表,标记异常数据;
④ 异常数据邮件流转至责任部门,24小时内必须修正。
结果:‌ 主数据重复率从37%降至8%,且未购买任何平台。

看到没有,EXCEL也可以治理主数据,要是在线版EXCEL就更棒了

二、没有平台如何治理元数据

1. 核心逻辑:元数据即数据的「说明书」——说明书未必要装订成册

元数据管理的本质是‌记录上下文‌,关键在于低成本留存关键信息:

  • 低成本解法:
    ✅ ‌Wiki/共享文档‌:用Confluence或腾讯文档建立企业数据字典,记录每个字段的定义、来源、更新规则。
    ✅ ‌字段注释硬编码‌:在数据库表结构设计阶段,强制要求开发人员在SQL脚本中添加字段注释(如:COMMENT ON COLUMN user_table.mobile IS '用户手机号,加密存储')。
    ✅ ‌邮件归档制度‌:数据口径变更时,必须通过邮件通知所有相关方,邮件自动归档为证据链。
    ✅ ‌血缘分析土法‌:用Python脚本解析SQL日志,生成数据加工流程图(参考开源工具Apache Atlas基础功能)。

2. 案例:某电商公司手工元数据管理

① 所有数据报表的取数逻辑必须附在邮件正文发送;
② 核心Hive表字段注释率达到100%,新表无注释不准上线;
③ 用ProcessOn绘制关键数据链路图,每季度更新;
④ 建立"元数据值班员"轮岗制,由数据分析师兼任答疑。
效果:‌ 数据需求响应速度提升40%,新人培训周期缩短2周。

元数据:数据的数据,利用工具把注释描述好,就是元数据治理好

三、没有平台如何提升数据质量

1. 核心逻辑:数据质量 = 检查点 + 责任制 + 文化渗透

与其依赖平台自动检测,不如让业务方成为数据质量的利益共同体:

  • 低成本解法:
    ✅ ‌业务自查清单‌:设计《数据录入必填字段清单》,例如客户地址必须到区级,否则无法提交订单。
    ✅ ‌SQL质量监控‌:用定时任务跑简单查询(如SELECT COUNT(*) FROM order WHERE amount IS NULL),结果邮件报警。
    ✅ ‌反向考核机制‌:数据质量指标(如供应商信息完整率)纳入采购部KPI,与绩效奖金挂钩。
    ✅ ‌群众举报奖励‌:员工发现数据错误可提报,核实后奖励积分(可兑换礼品)。

2. 案例:某物流公司数据质量实战

① 干线运输表必须包含「司机ID+车牌号」,否则调度系统拒绝派单;
② 每日晨会通报前日数据错误Top3(如运单目的地字段缺失);
③ 用Python+Flask开发简易数据质量看板(代码量<500行),展示各部门数据得分;
④ 设立"数据质量红旗榜",月度冠军部门额外奖励团建经费。
效果:‌ 运单数据错误率3个月内从22%降至5%。

有平台的数据质量管理,也可以简单看成规则控制,但是质量管理事前、事中、事后,平台的作用不一定有机制的作用大

四、从游击队到正规军:如何低成本过渡到平台化?

1. 工具替代方案

治理领域商业平台零成本替代方案
主数据Informatica MDMExcel+OA审批流+Python去重脚本
元数据CollibraConfluence文档+SQL注释+邮件归档
数据质量Talend DQSQL检查脚本+钉钉机器人报警

2. 终极心法:用「人治」换时间,用「规则」换空间

  • 人治阶段(0-1年):‌ 通过制度设计让员工被迫关注数据质量(如错误数据导致业务停摆)。
  • 半自动化(1-2年):‌ 用开源工具(如Apache Griffin)替代手工检查,降低人力成本。
  • 平台化(2年+):‌ 当治理文化成熟后,采购/自研平台解决规模化问题。

总结:高手无剑胜有剑,治理无台亦有道

数据治理的核心矛盾从来不是「有没有平台」,而是「愿不愿建立规则」和「能不能坚持执行」。

  • 短期:‌ 用制度和现有工具建立最小可行治理框架;
  • 长期:‌ 用治理成果倒逼平台建设(案例:某银行通过手工治理证明ROI后,成功立项采购数据中台)。
    记住:‌ 最危险的从来不是没有工具,而是用工具掩盖治理不作为——如同给弓箭手配了最先进的弩,他却从来不瞄准。
### 关于数据服务和数据治理的相关书籍推荐 #### 一、《企业级数据治理》 这本书深入浅出地介绍了如何构建高效的企业级数据治理体系。书中不仅涵盖了数据治理的基础理论,还详细描述了实际操作方法和技术手段。对于希望提升组织内部数据管理水平的人来说,这是一本不可多得的好书[^1]。 #### 二、《数据中台:让数据创造价值》 本书聚焦于数据中台这一新兴技术架构,在介绍其基本原理的同时,也分享了许多成功案例。读者可以从中了解到数据中台是如何帮助企业在复杂多变的市场环境中保持竞争力,并实现更精准高效的商业决策过程[^3]。 #### 三、《大数据治理之道——从战略到执行》 该作品全面解析大数据环境下的治理挑战与机遇,特别强调了元数据管理和数据资产管理的重要性。作者结合多年从业经验,给出了切实可行的战略规划建议以及具体实施路径[^2]。 #### 四、《数据质量:管理实践指南》 专注于解决各类影响数据分析效果的数据质量问题,提供了大量实用工具和技术来提高数据准确性、完整性和一致性等方面的表现。这对于从事任何依赖高质量输入源工作的专业人士来说都是必备读物之一[^4]。 ```python books = [ {"title": "企业级数据治理", "description": "涵盖基础理论及实操"}, {"title": "数据中台:让数据创造价值", "description": "探索数据中台的技术与应用"}, {"title": "大数据治理之道——从战略到执行", "description": "应对大数据环境下的治理挑战"}, {"title": "数据质量:管理实践指南", "description": "专注解决数据质量问题"} ] for book in books: print(f"- **{book['title']}**: {book['description']}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百老

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值