matlab中sinint啥意思,matlab课后习题解答第二章

matlab课后习题解答第二章

更新时间:2017/2/11 3:14:00  浏览量:630  手机版

第2章 符号运算

习题2及解答

1 说出以下四条指令产生的结果各属于哪种数据类型,是“双精度”对象,还是“符号”符号对象?

3/7+0.1; sym(3/7+0.1); sym('3/7+0.1'); vpa(sym(3/7+0.1)) 〖目的〗

? 不能从显示形式判断数据类型,而必须依靠class指令。

〖解答〗

c1=3/7+0.1

c2=sym(3/7+0.1)

c3=sym('3/7+0.1')

c4=vpa(sym(3/7+0.1))

Cs1=class(c1)

Cs2=class(c2)

Cs3=class(c3)

Cs4=class(c4)

c1 =

0.5286

c2 =

37/70

c3 =

0.52857142857142857142857142857143

c4 =

0.52857142857142857142857142857143

Cs1 =

double

Cs2 =

sym

Cs3 =

sym

Cs4 =

sym

2 在不加专门指定的情况下,以下符号表达式中的哪一个变量被认为是自由符号变量.

sym('sin(w*t)'),sym('a*exp(-X)'),sym('z*exp(j*th)') 〖目的〗

? 理解自由符号变量的确认规则。

〖解答〗

symvar(sym('sin(w*t)'),1)

ans =

w

symvar(sym('a*exp(-X)'),1)

ans =

a

symvar(sym('z*exp(j*th)'),1)

ans =

z

?a11

5求符号矩阵A???a21

??a31

〖目的〗

? 理解subexpr指令。

〖解答〗 a12a22a32a13?a23?所得结果应采用“子?的行列式值和逆,a33??表达式置换”简洁化。

A=sym('[a11 a12 a13;a21 a22 a23;a31 a32 a33]')

DA=det(A)

IA=inv(A);

[IAs,d]=subexpr(IA,d)

A =

[ a11, a12, a13]

[ a21, a22, a23]

[ a31, a32, a33]

DA =

a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31

IAs =

[ d*(a22*a33 - a23*a32), -d*(a12*a33 - a13*a32), d*(a12*a23 - a13*a22)]

[ -d*(a21*a33 - a23*a31), d*(a11*a33 - a13*a31), -d*(a11*a23 - a13*a21)]

[ d*(a21*a32 - a22*a31), -d*(a11*a32 - a12*a31), d*(a11*a22 - a12*a21)] d =

1/(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31)

8(1)通过符号计算求y(t)?sint的导数

dy求dtdy和dt?

2dy。(2)然后根据此结果,dt。 t?0?t?

〖目的〗

? diff, limit指令的应用。

? 如何理解运行结果。

〖解答〗

syms t

y=abs(sin(t))

d=diff(y) %求dy/dt

d0_=limit(d,t,0,'left') %求dy/dt|t=0-

dpi_2=limit(d,t,pi/2) %求dy/dt|t=pi/2

y =

abs(sin(t))

d =

sign(sin(t))*cos(t)

d0_ =

-1

dpi_2 =

9求出?1.7?

?10?e?xsinxdx的具有64位有效数字的积分值。

〖目的〗

? 符号积分的解析解和符号数值解。

? 符号计算和数值计算的相互校验。

〖解答〗

(1)符号积分

syms x clear

syms x

y=exp(-abs(x))*abs(sin(x))

si=vpa(int(y,-10*pi,1.7*pi),64)

y =

abs(sin(x))/exp(abs(x))

si =

1.087849499412904913166671875948174520895458535212845987519414166

(2)数值计算复验

xx=-10*pi:pi/100:1.7*pi;

sn=trapz(exp(-abs(xx)).*abs(sin(xx)))*pi/100

sn =

1.0877

10计算二重积分?12?x21(x2?y2)dydx。

〖目的〗

? 变上限二重积分的符号计算法。

〖解答〗

syms x y

f=x^2+y^2;

r=int(int(f,y,1,x^2),x,1,2)

r =

1006/105

11在[0,2?]区间,画出y(x)??x

0sint曲线,并计算y(4.5)。 t

〖目的〗

? 在符号计算中,经常遇到计算结果是特殊经典函数的情况。

? 如何应用subs获得超过16位有效数字的符号数值结果。 ? 初步尝试ezplot指令的简便。

〖解答〗

(1)符号计算

syms t x;

f=sin(t)/t;

y=int(f,t,0,x) % 将得到一个特殊经典函数 y5=subs(y,x,sym('4.5'))

ezplot(y,[0,2*pi])

y =

sinint(x)

y5 =

(2)数值计算复验

tt=0:0.001:4.5;

tt(1)=eps;

yn=trapz(sin(tt)./tt)*0.001

yn =

1.6541

?

12在n?0的限制下,求y(n)?

1

3?20sinnxdx的一般积分表达式,并计算y()的32位有效数字表达。

〖目的〗

? 一般符号解与高精度符号数值解。

〖解答〗

syms x

syms n positive

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值