摆的频率公式_单摆周期的公式推导

记单摆摆球质量为

,摆线长度为

,摆动过程中偏离竖直方向的夹角为

。若摆动的最大角振幅为

,我们来试求摆动周期

不考虑空气阻力等非保守力导致的能量损耗,则摆动过程中总机械能守恒

上式中我们将势能零点取在了最低点处,即平衡位置处的势能为零。

时,动能为零,机械能为纯势能,我们很容易写出总能量

的一个表达式:

联立(1)和(2),就可以解出速度的关系式:

另外,我们还可以将速度写成如下的形式:

将(4)代入(3)中,我们可以得到

分离变量后,我们可以两边积分。左边对

的积分代表摆动过程的时间,右边对

积分的结果自然就应该给出这个时间的计算关系式。我们考虑单摆从

摆动到

的过程,所需的时间等于周期

的一半。于是我们可以写下

的公式:

若能将(6)式的积分接出来,就可以得到单摆周期的精确公式。但问题是这个积分的结果并不能用初等函数表示,所以光有这个漂亮的积分式并不解决问题。

不过如果我们关心的是摆幅并不算大的振动,那么就可以利用一些近似方法来处理这个积分,得到近似的结果。

时,有

的 McLaurin-Taylor 展开:

为了处理(6)式中的被积函数,最粗暴的近似可以对

只保留到展开式中的前2项,于是

代回(6)式后,周期的积分变成

这个积分并不困难,常规操作作三角换元就可以很快搞定了。令

,则

,积分上下限

。于是有

我们就得到了大家可能都比较熟悉的单摆周期公式:

当然,我们可以将近似做得更精细一些。对

作展开时,我们可以取到展开式(7)的第3项,然后进行一通操作:

圆括号里的这一坨,我们可以接着用二项式展开去作近似:

把这些近似的鬼玩意儿一股脑通通塞回(6)式,我们得到:

同样作三角换元,令

,有

最后进行一些不算繁琐的运算后,我们求得单摆的周期近似为:

一些讨论

以上推导中,我们最多保留到了

展开式的前3项、二项式展开的前2项。如果有谁觉得自己头铁,可以试着继续保留后面的高次项,从头再算一波,近似结果会来得更精确。我查阅到的结果如下:

反正我是不大有勇气再算下去的。

显然这个推导的结果,包括(16)式的结果,在

时,都会很自然地会退化成(11)式

这个结果其实在很多高中教材中都有介绍,常规的证明方法是先证明单摆在小角度近似下作简谐振动(simple harmonic oscillation),然后通过解运动方程获得角频率(angular frequency)的信息,从而推出周期。当然,猜想角频率

应该取决于诸如摆球质量

、摆线长度

以及重力加速度

,通过量纲分析(dimensional analysis),也能大致能混出这个结果,这个推导比较简单,留给有兴趣的同学作为练习。

一般我们认为在

的角振幅内,单摆的周期都可以很好地用(11)式来预测,(16)式相当于在更高的精度上对(11)式做了一项修正。

我们不妨计算不同角振幅下(11)和(16)两式的偏差,其中差的无非就是

这个修正项。

好像就算到了

的振幅,误差也不过不到5%,也没有很可怕。

所以我们算了这么一通,究竟图什么呢?(手动狗头)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值