python多因子量化选股模型_Python量化入门:广受好评的三因子模型「附代码及数据」...

本文介绍了Fama-French三因子模型的不足与诞生背景,详细阐述了模型原理,并通过Python代码展示了如何进行三因子模型的实战选股,包括计算SMB和HML因子、挑选股票、构建回归模型等步骤。
摘要由CSDN通过智能技术生成

代码及数据见文章最后。

主要内容:

一、CAPM的不足与三因子模型的诞生

二、三因子模型的原理

三、Python三因子模型选股实战

一、CAPM的不足与三因子模型的诞生

CAPM模型经历了大量的实证和应用之后,有证据表明,市场风险溢酬并不能充分解释个别风险资产的收益率。于是很多研究者开始探索其他的因素,比如公司市值、PE、杠杆比例、账面市值比等。

Fama和French两个人对于各种因素进行了全面的组合分析,当单独使用Beta或者用Beta分别与其他几个因子相结合时,Beta的解释能力很弱;市值、PE(市盈率)、杠杆比例、BM(账面市值比,PB的倒数)单独来用时,对于收益率的解释能力都很强,但是组合起来时,市值、BM会弱化杠杆比例和PE的解释能力。

后来Fama和French两人提取了3个重要因子:市场风险溢酬因子、市值因子和账面市值比因子,以收益率作为因变量构建了一个类似CAPM的线性模型,即著名的三因子模型。

二、三因子模型的原理

三因子模型中的3个因子均为投资组合的收益率:市场风险溢酬因子对应了市场投资组合的收益率,市值因子对应了做多市值较小的公司与做空市值较大的公司的投资组合带来的收益率,账面市值比因子对应的是做多高BM公司、做空低BM公司的投资组合带来的收益率。三因子模型的形式为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值