ac ap原理、_【模型研究】极致经典:最值系列之瓜豆原理

本文通过多个引例详细解析了在动点问题中,如何利用“瓜豆原理”求解最值问题。通过分析动点与定点之间的关系,特别是角度和距离的定量条件,来确定从动点的轨迹,通常这些轨迹是圆形。通过旋转和比例变化,可以找出解决这类问题的规律,并给出了若干中考、模拟考试的真题作为例证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

好文赏析

【01】培优拔高 | 初中最值问题的19大类型

【02】一题多变/一题多问/一题多解/一 一聚多

【03】一道二次函数经典题的50种问法

【04】初中数学23种模型分年级段全梳理

【05】易错 | 中考数学常见易错题全梳理

【06】易错汇编 | 高中数学易错知识点汇编

在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.

本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路

01 动点轨迹之“圆”

引例1

如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.当点P在圆O上运动时,Q点轨迹是?

2b94b59d27e69828b281406255862a5b.png

【分析】观察动图:

1e461ab6adf63b79374e91af459f66af.gif

点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?

考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.

507fa28415935cd87d4b7ed5000fa6d0.png

【小结】确定Q点轨迹圆即确定其圆心与半径,

由A、Q、P共线可得:A、M、O三点共线,

由Q为AP中点可得:AM=1/2AO.

Q点轨迹相当于是P点轨迹成比例缩放.

引例2

如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.当点P在圆O上运动时,Q点轨迹是?

  4cf11211ecd406b8c550840bce3732fd.png

【分析】动图先看结果:

 10bd7265b8735a3d816508bc55e7d752.gif

Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.

 e25a0c9daa091fd95aa4851017cbe698.png

考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;

考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.

即可确定圆M位置,任意时刻均有△APO≌△AQM.

3d49d14706fe0987185842442559bc9f.png

根据动点之间的相对位置关系分析圆心的相对位置关系;

根据动点之间的数量关系分析轨迹圆半径数量关系.

3d49d14706fe0987185842442559bc9f.png

引例3

如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?

58794efbc797f3600d9f06a95759861a.png

【分析】动图先看结果:

 b7e5b79d076d4011345896ef4c9e4cb2.gif

考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;

考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.

即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.

a995a4eb4f782032309d01a0460a836f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值