损失函数又叫做误差函数,用来衡量算法的运行情况,Loss function:𝐿(𝑦^ , 𝑦).
我们通过这个𝐿称为的损失函数,来衡量预测输出值和实际值有多接近。一般我们用预
测值和实际值的平方差或者它们平方差的一半,但是通常在逻辑回归中我们不这么做,因为优化目标不是凸优化,只能找到多个局部最优值,梯度下降法很可能找不到全局最优值,虽然平方差是一个不错的损失函数,但是我们在逻辑回归模型中会定义另外一个损失函数。
我们在逻辑回归中用到的损失函数是:𝐿(𝑦^ , 𝑦) = −𝑦log(𝑦^) − (1 − 𝑦)log(1 − 𝑦^)
为什么要用这个函数作为逻辑损失函数?
当我们使用平方误差作为损失函数的时候,你
会想要让这个误差尽可能地小,对于这个逻辑回归损失函数,我们也想让它尽可能地小,为
了更好地理解这个损失函数怎么起作用,我们举两个例子:
当𝑦 = 1时损失函数𝐿 = −log(𝑦^),如果想要损失函数𝐿尽可能得小,那么𝑦^就要尽可能大,
因为 sigmoid 函数取值[0,1],所以𝑦^会无限接近于 1。
当𝑦 = 0时损失函数𝐿 = −log(1 − 𝑦^),如果想要损失函数𝐿尽可能得小,那么𝑦^就要尽可
能小,因为 sigmoid 函数取值[0,1],所以𝑦^会无限接近于 0。
多谢关注,后续还会继续分享,欢迎大家一起来学习⊙ω⊙