用计算机浮点数表示法计算,计算机组成原理:浮点数表示及运算.ppt

本文探讨了浮点数在计算机中的表示方法,包括8位和16位浮点数的表示范围,并介绍了规格化的概念及其目的。通过实例解析了浮点数的二进制存储格式,以及浮点数的加减运算过程,强调了对阶和尾数调整的重要性。此外,还涉及到浮点数转换为十进制和二进制格式的具体步骤。
摘要由CSDN通过智能技术生成

计 算 机 组 成 原 理;一、浮点数的表示;浮点数的表示范围;8位定点小数可表示的范围0.0000001 --- 0.1111111 1/128 --- 127/128设阶码2位,尾数4位可表示2-11*0.0001 --- 211*0.1111 0.0000001 --- 111.1设阶码3位,尾数3位可表示2-111*0.001 --- 2111*0.111 0.0000000001 --- 1110000;一个浮点数有不同的表示: 0.5; 0.05?101 ; 0.005 ?102 ; 50 ?10-2;规格化目的:为了提高数据的表示精度为了数据表示的唯一性尾数为R进制的规格化: 绝对值大于或等于1/R二进制原码的规格化数的表现形式: ;解:12310 0.11110110002×27 [7]移=10000+00111 = 10111 [0.1111011000]补=0.1111011000 [123]浮= 1011 1 0 11 1101 1000 = BBD8H;S——尾数符号,0正1负;M——尾数, 纯小数表示, 小数点放在尾数域的最前面。采用原码表示。 E——阶码,采用“移码”表示(移码可表示阶符); 阶符采用隐含方式,即采用移码方法来表示正负指数。; 规格化浮点数的真值;例:若浮点数 x 的二进制存储格式为16,求其32位浮点数的十进制值。;例: 将十进制数20.59375转换成32位浮点数的二进制格式来存储。;解:-0.75 = -3/4 = -0.112 = -1.1×2-1 =(-1)1×(1 + 0.1000 0000 0000 0000 0000 000)×2-1

=(-1)1×(1 + 0.1000 0000 0000 0000 0000 000)×2126-127

s=1,E=12610 = 011111102,F=1000 … 000。

1 011,1111,0 100,0000,0000,0000,0000,0000 B F 4 0 0 0 0 0 H;;;设有两个浮点数x和y, 它们分别为:;完成浮点加减运算的操作过程大体分为:; 使二数阶码相同(即小数点位置对齐),这个过程叫作对阶。 ? 先求两数阶码 Ex 和 Ey之差,即△E = Ex-Ey 若△E = 0,表示 Ex=Ey 若△E > 0, Ex>Ey 若△E < 0, Ex

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值