蒙特卡罗模拟法的理论基础是大数定律。其发展得益于计算能力的提升和计算成本的下降。蒙特卡罗模拟法在很多领域都有广泛的应用。
引子

图片来源:Wikipedia
matrix67的《数学里也能耍流氓》一文,其中提到了旋轮线的面积的证明:
车轮在地上旋转一圈的过程中,车轮圆周上的某一点划过的曲线就叫做“旋轮线”。在数学和物理中,旋轮线都有着非常重要而优美的性质。比如说,一段旋轮线下方的面积恰好是这个圆的面积的三倍。这个结论最早是由伽利略(Galileo Galilei,1564-1642)发现的。不过,在没有微积分的时代,计算曲线下方的面积几乎是一件不可能完成的任务。伽利略是如何求出旋轮线下方的面积的呢?
他的方法简单得实在是出人意料:它在金属板上切出旋轮线的形状,拿到秤上称了称,发现重量正好是对应的圆形金属片的三倍。
“称重”是对蒙特卡罗模拟法最形象的解释。
蒙特卡洛模拟
我们首先把旋轮线放在坐标系中:
旋轮线的方程为:
x=r*(θ-sinθ)
y=r*(1-cosθ)
旋轮线内切于一个矩形,并且将这个矩形分为两部分:旋轮线上方平面和下方平面。
假设点在平面上的分布是均匀的,而且所有点的面积、质量相等。则,旋轮线上方平面和下方平面的面积之比等于质量之比,也等于平面内点的个数之比。
如果从矩形区域

这篇博客介绍了利用蒙特卡洛模拟方法计算旋轮线下方面积的过程。通过在矩形区域内随机取点并利用大数定律,计算点在旋轮线上方和平面下方的比例,进而求得面积比。文章提供了Matlab实现的示例,展示了随机抽样在100000次后得到的面积比接近0.75,从而验证了旋轮线下方面积为圆面积的3倍的结论。
最低0.47元/天 解锁文章
3568

被折叠的 条评论
为什么被折叠?



