前言
总结了数分中的Abel-Dirichlet判别法,总体来说,一个是以积分形式出现,一个是以级数形式出现。在积分中,有反常积分以及含参积分;在级数形式中,有数项级数与函数项级数。借助“一致(uniformly)”的概念,将函数项级数“一致”到数项,将含参的反常积分“视为”普通的反常积分。
总体来说,本质上都是Abel变换,但是对于积分形式的证明,需要证明一下第二类积分中值定理。
下面就开始正文
(以下内容参考梅加强、谢惠民的数学分析)
目录
- 反常积分
- 积分第二中值定理
- Abel变换引理
- 级数
- 函数项级数、含参广义积分
- AD判别法的逆命题
反常积分
Dirichlet判别法 设在
上有界,函数
在
上单调,且
,则积分
收敛。
证明:
设
由积分第二中值定理,当
Abel判别法 如果广义积分收敛,函数
在
上单调有界,则积分
也收敛。
证明:
因为
积分第二中值定理
前面两处使用了第二中值定理,用于任意小的估计,将“内积”形式拆成“数量积*定积分”的形式,从而方便估计。
下面,就来说说根积分第二中值定理相关的内容。
积分第二中值定理 设在
上可积,则
- 如果
在
上递减,且非负,则
使得
- 如果
在
上递增,且非负,则
使得
- 一般地,如果
为
上的单调函数,则存在
使得
证明:
因此,有
对于第二个命题,把变上限积分改为变下限积分。
对于第三个命题,令
该命题中间使用了Abel变换,所以下面再说一下Abel变换。
Abel变换引理
这块内容比较初等,如果一眼看不出来,可以先写
部分和公式:
Abel变换:
Abel引理:
级数
Dirichlet判别法 设数列单调趋于
,级数
的部分和有界,则级数
收敛。
证明:
由假设,
Abel判别法 如果单调有界,
收敛,则级数
收敛
证明:
函数项级数、含参广义积分
这两块仿照上面的证明即可,我就只给结论。
函数项
Dirichlet判别法 设级数部分和一致有界,即
使得
,
,
。并且
,
关于
单调,
,则级数
上一致收敛。
Abel判别法 设级数在
上一致收敛,且对每一个
,
关于
单调,且在
上一致有界,则级数
在
上一致收敛。
含参广义积分
Dirichlet判别法 设,
满足下列条件:
1、当时,积分
关于
一致有界,即存在常函数
,使得
![]()
2、是
的单调函数,且
,
是关于
一致趋于令,即
,
,当
时,
则含参广义积分
关于
一致收敛
Abel判别法 设,
满足以下条件
1、积分关于
一致收敛
2、是关于
的单调函数,且关于
一致有界
则含参变量的广义积分关于
一致收敛
AD判别法的逆命题
逆命题给出了收敛反常积分的分解形式, 可以更加深刻地了解收敛反常积分。
(以下参考 谢惠民 数学分析)
Dirichlet判别法 设在
上内闭可积,
为奇点,广义积分
收敛地充分必要条件是存在分解
使得
- 函数
在
上单调,且
- 对任何
,积分
有界
证明:
此处只说明必要性,当
因为
现在定义
容易看出