柯西判别法证明_数分随记(七)数分中的AD判别法

本文介绍了数分中的Abel-Dirichlet判别法,探讨了反常积分、积分第二中值定理、Abel变换引理、级数和函数项级数等内容。通过证明和相关定理的应用,阐述了如何利用这些工具判断积分和级数的收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

总结了数分中的Abel-Dirichlet判别法,总体来说,一个是以积分形式出现,一个是以级数形式出现。在积分中,有反常积分以及含参积分;在级数形式中,有数项级数与函数项级数。借助“一致(uniformly)”的概念,将函数项级数“一致”到数项,将含参的反常积分“视为”普通的反常积分。

总体来说,本质上都是Abel变换,但是对于积分形式的证明,需要证明一下第二类积分中值定理

下面就开始正文

(以下内容参考梅加强、谢惠民的数学分析)

目录

  • 反常积分
  • 积分第二中值定理
  • Abel变换引理
  • 级数
  • 函数项级数、含参广义积分
  • AD判别法的逆命题

反常积分

Dirichlet判别法
上有界,函数
上单调,且
,则积分
收敛。

证明:

,则
又因为
。故任给
,存在
,使得
时,有

由积分第二中值定理,当

时,
由Cauchy收敛准则知,积分
收敛。QED
Abel判别法 如果广义积分
收敛,函数
上单调有界,则积分
也收敛。

证明:

因为

有界,可设
又因为
积分收敛,故
使得
由积分第二中值定理可知
由Cauchy准则知,积分收敛。QED

积分第二中值定理

前面两处使用了第二中值定理,用于任意小的估计,将“内积”形式拆成“数量积*定积分”的形式,从而方便估计。

下面,就来说说根积分第二中值定理相关的内容。

积分第二中值定理
上可积,则
  1. 如果
    上递减,且非负,则
    使得
  2. 如果
    上递增,且非负,则
    使得
  3. 一般地,如果
    上的单调函数,则存在
    使得

证明:

为连续函数(如果
连续,则
为Lipschitz函数),故可以达到最大值最小值
。又因为
上可积,故
有界。设
。因为
单减,
可积,从而
存在
的分割
,使得

因此,有

对于
,上式可以为
组合以上两个不等式,得到
如果
,则
。如果
则有
由介值定理可以得到
从而第一个命题得证。

对于第二个命题,把变上限积分改为变下限积分。

对于第三个命题,令

即可。QED

该命题中间使用了Abel变换,所以下面再说一下Abel变换。


Abel变换引理

这块内容比较初等,如果一眼看不出来,可以先写

时的情形,找找规律,以下直接给结论。

部分和公式

Abel变换

其中
前n项和。

Abel引理

单调,且
,则

级数

Dirichlet判别法 设数列
单调趋于
,级数
的部分和有界,则级数
收敛。

证明:

由假设,

使得
由Abel变换及其推论
由Cauchy收敛准则,级数收敛。QED
Abel判别法 如果
单调有界,
收敛,则级数
收敛

证明:

单调有界,意味着极限存在,即
。于是
单调收敛于
.由Dirichlet判别法,可知
收敛。从而级数
收敛。QED。

函数项级数、含参广义积分

这两块仿照上面的证明即可,我就只给结论。

函数项

Dirichlet判别法 设级数
部分和一致有界,即
使得
。并且
关于
单调,
,则级数
上一致收敛。
Abel判别法 设级数
上一致收敛,且对每一个
关于
单调,且在
上一致有界,则级数
上一致收敛。

含参广义积分

Dirichlet判别法
满足下列条件:

1、当
时,积分
关于
一致有界,即存在常函数
,使得

2、
的单调函数,且
是关于
一致趋于令,即
,当
时,
则含参广义积分
关于
一致收敛
Abel判别法
满足以下条件

1、积分
关于
一致收敛

2、
是关于
的单调函数,且关于
一致有界

则含参变量的广义积分
关于
一致收敛

AD判别法的逆命题

逆命题给出了收敛反常积分的分解形式, 可以更加深刻地了解收敛反常积分。

(以下参考 谢惠民 数学分析)

Dirichlet判别法
上内闭可积,
为奇点,广义积分
收敛地充分必要条件是存在分解
使得
  1. 函数
    上单调,且
  2. 对任何
    ,积分
    有界

证明:

此处只说明必要性,当

的情形。

因为

收敛,所以柯西收敛。存在
使得对于
成立。归纳地,对于
,使得
,有
这样得到的
是严格增加的无穷大序列。

现在定义

以及
这样就有分解
。其中函数
满足第一个条件(肉眼可见),下面只需证明
是否满足条件。

容易看出

上内闭可积,因此只需要证明它爱任何区间
上的积分有界。由于
时,
,因此存在常数
使得对这样
成立,
,则
,使得
。于是
有以下估计
有界。QED
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值