python泰坦尼克号案例分析_利用python对泰坦尼克号数据集进行分析

本文使用Python 3.5.2和Anaconda 3工具,通过Kaggle获取泰坦尼克号数据集进行分析。首先展示了数据的基本描述和信息,接着利用matplotlib进行数据可视化,包括获救情况、乘客等级分布、年龄与获救关系以及各登船口岸人数的分析,揭示了不同特征与生存率的关联。
摘要由CSDN通过智能技术生成

一、数据来源

数据集来自于Kaggle。Kaggle是一个数据分析建模的应用竞赛平台。当然也可以从其它地方下。

二、相关工具

2.1 Python 3.5.2

2.2 Anaconda 3

三、牛刀小试

3.1 导入训练数据集

import pandas as pd

import numpy as np

from pandas import Series,DataFrame

f = open(r'E:\Python\数据分析\data\train.csv')

data_train = pd.read_csv(f)

对数据进行初步分析

data_train.describe()

运行结果如下:

f416a872565c95d0413966dea7bf33e6.png

进一步分析

data_train.info()

运行结果:

a16f63e66bb51ca78d10a2b8cc42af32.png

3.2 数据图像化分析

数据中的各个属性

import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei']

fig = plt.figure()

fig.set(alpha=0.2)

plt.subplot2grid((2,3),(0,0))

data_train.Survived.value_counts().plot(kind='bar')

plt.title(u'获救情况(1为获就)')

plt.ylabel(u"人数")

plt.subplot2grid((2,3),(0,1))

data_train.Pclass.value_counts().plot(kind='bar')

plt.title(u"乘客等级分布")

plt.ylabel(u"人数")

plt.subplot2grid((2,3),(0,2))

plt.scatter(data_train.Survived,data_train.Age)

plt.ylabel(u"年龄")

plt.grid(b=True,which='major',axis='y')

plt.title(u"按年龄看获救分布(1为获救)")

plt.subplot2grid((2,3),(1,0),colspan=2)

data_train.Age[data_train.Pclass==1].plot(kind='kde')

data_train.Age[data_train.Pclass==2].plot(kind='kde')

data_train.Age[data_train.Pclass==3].plot(kind='kde')

plt.xlabel(u"年龄")

plt.ylabel(u"密度")

plt.title(u"各等级的乘客年龄分布")

plt.legend((u'头等舱', u'2等舱',u'3等舱'),loc='best')

plt.subplot2grid((2,3),(1,2))

data_train.Embarked.value_counts().plot(kind='bar')

plt.title(u"各登船口岸上船人数")

plt.ylabel(u"人数")

plt.show()

运行结果:

2361a40864176739286484406f1a8917.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值