Z变换和离散时间傅里叶变换(DTFT)知识点总结

一.序列的Z变换

1.定义

根据起始值的不同可分为单边、双边Z变换。其中因果序列的两种变换结果相同,一般用双边Z变换计算。

2.Z变换收敛域

在有理分式形式中,总是用极点界定其边界。

以下为四种典型收敛域:

1) 有限长序列z 变换的收敛域   0<|z|<无穷

2)因果序列,收敛域在z平面上半径为|a|的圆外区域二。

3)反因果序列,收敛域在z平面上半径为|b|的圆内区域

4)双边序列当|a|<|b|时ZT存在,敛域为|a|<|z|<|b|的环状区域

二.序列的傅里叶变换

1.定义

变换后的X为x(n)的频谱。特点:连续函数,以2π为周期,是\omega的复函数。

2.存在条件

1)x(n)绝对可和---充分条件

2)x(n)平方可和

3)引入冲激函数

序列的z变换与序列的傅里叶变换的关系:

序列在单位圆上的z变换=序列的傅里叶变换

求序列傅里叶变换的方法:直接用定义;先求z变换。

常用序列的DTFT:

3.DTFT主要性质

4.DTFT的一些对称性质

1)

共轭对称序列:实部偶对称,虚部奇对称

共轭反对称序列:实部奇对称,虚部偶对称

任意序列x(n)总能表示成一个共轭对称序列与一个共轭反对称序列之和

序列的傅里叶变换可以分解为共轭对称分量与共轭反对称分量之和

2)序列傅立叶变换的对称性

x(n)为实数偶对称,X(e为实数偶对称

实奇对虚奇

三.序列的z变换与连续信号的拉普拉斯变换、傅里叶变换的关系

连续信号的傅里叶是虚轴上的拉氏变换

序列的傅里叶是单位圆上的Z变换

从理想采样信号的拉普拉斯变换到采样序列的z变换,就是由复变量s平面到复变量z平面的映射,其映射关系为:

多对一的映射

序列的傅里叶变换等于其理想抽样信号的傅里叶变换

抽样序列频谱是其理想抽样信号的傅里叶变换,即原连续信号的频谱周期延拓

四.离散LSI系统的频域表征

1、系统的几种描述方法

单位序列响应系统函数频率响应:

系统函数:

频率响应:

常系数线性差分方程零、极点图、方框图

2.离散时间系统的稳定性和因果性

1)系统的因果性

a.从时域判断

h(n)=0  n<0;

b.从频域判断

2)系统的稳定性

满足输入有界,输出有界

a.时域分析

b.变换域分析

3)因果稳定系统

极点都在单位圆内

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值