SHA256哈希对象 能保证多长的字符串后才重复
SHA-256是一种哈希函数,它可以接受任意长度的输入(字符串),并生成一个固定长度(256位,或32字节)的哈希值。由于输入可以是任意长度,理论上存在无限多种可能的输入组合。然而,由于输出是固定长度的,这意味着必然存在不同的输入会产生相同的输出哈希值,这种现象称为“哈希碰撞”。
对于SHA-256,哈希值的输出空间是 2 256 2^{256} 2256,这是一个非常大的数字。因此,对于任意特定的输入字符串,找到另一个具有相同哈希值的字符串是非常困难的。然而,随着越来越多的哈希值被生成,找到碰撞的可能性会逐渐增加。
没有固定的字符串长度可以保证哈希值不重复,因为这取决于已经生成的哈希值的数量。一般来说,SHA-256被认为是足够安全的,用于大多数需要哈希函数的场合。但是,对于需要极高安全性的应用,可能需要使用更大的哈希值空间,例如SHA-512。
如果你想要更精确的数学分析,可以使用生日悖论来估算生成碰撞的概率。生日悖论表明,当哈希值的数量大约为 2 128 2^{128} 2128 时,找到一对具有相同哈希值的输入的概率大约是50%。这意味着,如果你随机生成大约 2 128 2^{128} 2128 个不同的哈希值,那么有一半的概率至少有一对哈希值会发生碰撞。由于 2 128 2^{128} 2128 是一个非常大的数字,所以在实际应用中,SHA-256通常被认为是足够安全的。
(2^{256}) 是一个非常大的数字,它等于:
[ 115792089237316195423570985008687907853269984665640564039457584007913129639936 ]
这个数字有78位数字。
那么假设长度多长的中文文章会导致sha-256 重复
要计算导致 SHA-256 哈希重复的中文文章的长度,我们需要考虑几个因素:
- 中文字符集:中文通常使用 Unicode 编码,其中常用的编码标准是 UTF-8。UTF-8 编码中,一个中文字符可能占用 3 个字节。
- SHA-256 的输出空间:SHA-256 生成的哈希值有 (2^{256}) 种可能的组合。
使用生日悖论,我们可以估算出当随机哈希的数量接近 (2^{128}) 时,出现碰撞的概率大约是 50%。这是因为 (2^{128}) 是 (2^{256}) 的一半。
假设每个中文字符平均占用 3 个字节,那么我们可以计算出大约需要多少个中文字符来达到 (2^{128}) 个不同的哈希值:
[ \text{中文字符数} = \frac{ {2^{128}}}{ {3 \times 8}} ]
这里的除以 3 是因为每个字符大约占用 3 个字节,除以 8 是因为每个字节包含 8 位。让我们计算一下这个数字。
计算 2^128 除以每个中文字符平均字节数(3字节)乘以 8 位
num_characters = (2**128) / (3 * 8)
1.4178431955039102e+37
根据计算,大约需要 1.4178431955039102*10^37 个中文字符,才能使 SHA-256 哈希值有 50% 的概率发生重复。这是一个极其巨大的数字,远远超出了任何实际应用的范围。
因此,在实际应用中,SHA-256 被认为是足够安全的,即使对于非常长的中文文章,产生哈希碰撞的概率也非常低。
即使全球数据量也安全?
全球信息的总量是一个极其庞大的数字,而且这个数字随着时间不断增长。根据不同的估计,到2020年,全球数据量已经达到了约44泽字节(Zettabytes,1 ZB = 10^21字节)。而且,这个数字预计会以指数级的速度增长。
如果我们考虑全球信息总量,并假设每个字节的信息都使用 SHA-256 进行哈希,那么我们之前计算的 1.4178431955039102 * 10^37 个字节将是产生哈希碰撞的阈值。这意味着,只有当全球信息总量达到这个级别时,我们才有可能遇到 50% 的概率产生至少一对 SHA-256 哈希碰撞。
然而,这个计算是非常理论化的。在实际应用中,全球信息并不是随机或均匀分布的,而且很多数据可能是重复的或者高度相关的,这会降低实际发生碰撞的概率。此外,SHA-256 被设计为具有非常高的安全性,即使在处理大量数据时,碰撞的概率也是非常低的。
总的来说,尽管全球信息总量非常庞大,但在可预见的未来,SHA-256 仍然是一个足够安全的哈希函数,用于大多数需要数据完整性和安全性的应用。
感谢:
- 李清舟
- 至味人间
- 沐曦baba
- 春雪芳菲
- DataMastermind
- Artemis
- MAI
- 皇城根奶爸
- 一个小老虎
- 遥远的瞧
- 飞黄腾踏去
- 小狐狸M
- 一见导师就变乖
- JamesHarden_
- zibuyu9
- 金城七
- verwandte
- 鄢希不是糖
- 带带小猪頭
- laforet
- 珍儿要有梦
- Alkaid.K
- 打打印机
- 优达学城(Udacity)
- KerstinTongx