悠悠吾心的专栏

全栈的博客自然啥都有了

哈希冲突的概率

哈希冲突的概率

一个Hash函数由指定类型的项和一个在指定范围内生成的Hash值组成。输入的每一项可能是任何事物:字符串,文件,甚至目录。相同的输入总能生成相同的Hash值,并且一个好的Hash函数总是致力于不同的Hash输入得到不同的值。

一个Hash函数并不知道在输入集合中的其他项,当一个输入项通过它时,它仅仅进行着一些按位与/或操作,因此,总有2个不同的输入项,得到相同Hash值的可能。
举个众所周知的Hash函数CRC32,如果你给这个Hash函数“plumless” 和“buckeroo”这2个字符串,它会生成相同的Hash值,这是已知的Hash冲突。

这里写图片描述

计算Hash冲突的概率

虽然已经很多可以选择的Hash函数,但创建一个好的Hash函数仍然是一个活跃的研究领域。一些Hash函数是快的,一些是慢的,一些Hash值均匀地分布在值域上,一些不是。如果你对一些。对于我们的目的,让我们假设这个Hash函数是非常好的。它的Hash值均匀地分布在值域上。

在这种情况下,对于一个输入集合生成的Hash值是非常像生成一个随机数集合。我们的问题转化为如下:
        给K个随机值,非负而且小于N,他们中至少有个相等的概率是多少?
实际上我们求这个问题的对立问题更加简单:他们都不相同的概率是多少?无论这个对立问题的结果是多少,我们用1减去对立问题的结果就得到原问题的结果。

对于一个值域为N的Hash值,假设你已经挑选出一个值。之后,剩下N-1个值是不同于第一个值的,因此,对于第二次随机生成不同第一个数的概率为N/N-1.
简而言之,有N个不同的数,你第一次挑选出某个,然后继续从N个数中挑选,那只要不是选到和第一次一样的那个数一样就不一样喽,所以概率为N-1/N。
之后就是第三次挑选,第三次挑选出的第三个数要求不同于前两个数,所以概率就为N-1/N*N-2/N.
一般的,随机生成K个数,他们都不相同的概率为:
这里写图片描述
计算机中,对于K很大的时候计算很麻烦,幸运的是,上面的表达式近似于
这里写图片描述
这个会更快得计算,我们如何知道这是一个好的近似。我们看一下分析过程,使用泰勒公式和epsilon-delta proof,这个误差趋于0当N增大的时候。或者,更简单,你可以计算2者的值然后比较他们,运行下面的python代码,你会感觉到这个近似是多么准确:

import math
N = 1000000
probUnique = 1.0
for k in xrange(1, 2000):
    probUnique = probUnique * (N - (k - 1)) / N
    print k, 1 - probUnique, 1 - math.exp(-0.5 * k * (k - 1) / N)

好的,这个奇妙的表达式作为我们每个值都不一样的结果,然后我们用1减去得到Hash冲突的概率
这里写图片描述
这是一个 N=2^32的图,它说明了使用32bit的Hash值的冲突概率,当Hash数是77163时,发生碰撞的可能为50%,这是有价值的。而且注意无论N区任意值都会得到一个类似S曲线的图。
这里写图片描述

简化表达式

这是非常有趣的,我们的表达式是1-e^-x这种形式,下面近似这仅仅在X较小的时候误差非常小,1/10或更小:
这里写图片描述
换句话说,这个表达式非常好的近似于它自己的指数,实际上x越小,越准确,所以小的冲突概率,我们能使用这个简化表达式
这里写图片描述
这实际上是一个非常方便的表示。因为它避免了一些在原表达式中的精度问题。浮点型数字在非常接近1的时候表示不是很好。

此外,如果N远大于K,K和K-1并没有什么大区别。所以我们可以更加化简为:K^2/2N

一些冲突概率

在某些应用中,例如将Hash值作为ID,避免冲突是非常重要的。这是非常好的概率是更小的原因。

假设Hash值是32位,64位,160位,下表包括了小概率的范围。如果你知道Hash值的取值数量,非常简单地找到这个最近的行,我们以挂彩排中奖的角度去看这个冲突概率
这里写图片描述

阅读更多
文章标签: hash 算法
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭