单纯形法min例题详解_单纯形法例题讲解

(标准形式即所有的变量均为负、

所有约束条件为等式、

所有的右端

项系数非负)

a=(2,3)

b1=(80,160,120)

A2=NULL

b2=NULL

A3=NULL

b3=NULL

n.iter=n+2*m

maxi=TRUE

simplex(a=a,A1=A1,b1=b1,maxi=TRUE)

m1=3,m2=0,m3=0

m=3,n=2

a.o=a=(2,3)

if(maxi)

a=-a(-2,-3)

if(m2+m3==0)

a=(-2,-3,0,0,0)

b=(80,160,120)

init=(0,0,0,80,160,120)

basic=(3,4,5)

eps=1e

-10

out1

simplex1(a=a,A=A,b=b,init=init,basic=basic,eps=eps):

N=5,M=3

nonbasic=(1,2)

if(stage==2)

obfun=(

-2,-3)

it=1

while(!all(obfun > -eps) && (it <= n.iter))

循环

pcol=3

if(stage==2)

neg=(1,3)

x1+2x2<=80

4x1<=160

4x2<=120

x1

x2>=0

A1=

1

2

4

0

0

4

A=

1

2

1

0

0

4

0

0

1

0

0

4

0

0

1

tableau=

80

-1

-2

160

-4

0

120

0

-4

tableau=

80

-1

-2

160

-4

0

120

0

-4

0

-2

-3

转化为标准形式

x1+2x2+x3=80

4x1+x4=160

4x2+x5=120

x1,x2,x3,x4,x5>=0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对偶单纯形法是线性规划中的一种求解方法,用于求解最大化问题的对偶问题。以下以一个例题来详细介绍对偶单纯形法的求解过程。 假设有一个最大化问题的线性规划模型如下: max 3x1 + 4x2 s.t. 2x1 + x2 ≤ 6 x1 + 2x2 ≤ 4 x1, x2 ≥ 0 首先,我们将原问题转化为标准形式。引入松弛变量s1和s2,使得约束条件变为等式,得到如下的等价问题: max 3x1 + 4x2 s.t. 2x1 + x2 + s1 = 6 x1 + 2x2 + s2 = 4 x1, x2, s1, s2 ≥ 0 接下来,我们构建对偶问题。对偶问题的目标是最小化原问题的约束条件的线性组合。 min 6y1 + 4y2 s.t. 2y1 + y2 ≥ 3 y1 + 2y2 ≥ 4 y1, y2 ≥ 0 然后,我们构建对偶单纯形表。表格的第一行为目标函数的系数(即原问题的约束条件的系数),第一列为变量名称,然后填入相应的约束条件的系数。 | 6 4 0 0 | |__________| | -2 -1 1 0 | | -1 -2 0 1 | 接下来,我们按照对偶单纯形法的步骤进行计算。首先,选择需要进基的变量,即目标函数系数最小的变量。在这个例题中,进基变量为y1。然后,选择需要出基的变量,即对应于进基变量列中比率最小的变量。在这个例题中,出基变量为s1。 接下来,进行主元消元,即对进基变量所在列进行运算,将列中其他元素变为0。通过计算,可以得到如下的单纯形表: | 2 4 0 3 | |__________| |-2 -1 1 0 | | 1 -2 0 1 | 重复以上的步骤,直到所有的主元消元都完成,最终得到如下的单纯形表: | 0.4 3.2 0 7.6 | |______________| | 0.6 1.4 1 0.4 | | 0.8 1.6 0 1.2 | 此时,表格中没有负值,说明已经达到最优解。根据对偶单纯形表,我们可以得到原问题的最优解为max 7.6。 综上所述,对偶单纯形法通过构建对偶问题和对偶单纯形表,通过选择进基和出基变量,进行主元消元的方式,逐步求解出原问题的最优解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值