linux安装时间太久,为什么在Alpine Linux上安装Pandas需要很长时间

我注意到使用基本操作系统Alpine与CentOS或Debian在Docker容器中安装Pandas和Numpy(它的依赖关系)需要更长的时间.我在下面创建了一个小测试来演示时差.除了Alpine更新和下载构建依赖项以安装Pandas和Numpy的几秒钟之外,为什么setup.py需要比Debian安装多70倍的时间?

有没有办法加速使用Alpine作为基本图像的安装,或者是否有另一个与Alpine相当的基本图像,最好用于像Pandas和Numpy这样的软件包?

Dockerfile.debian

FROM python:3.6.4-slim-jessie

RUN pip install pandas

使用Pandas& amp;构建Debian映像NumPy的:

[PandasDockerTest] time docker build -t debian-pandas -f Dockerfile.debian . --no-cache

Sending build context to Docker daemon 3.072kB

Step 1/2 : FROM python:3.6.4-slim-jessie

---> 43431c5410f3

Step 2/2 : RUN pip install pandas

---> Running in 2e4c030f8051

Collecting pandas

Downloading pandas-0.22.0-cp36-cp36m-manylinux1_x86_64.whl (26.2MB)

Collecting numpy>=1.9.0 (from pandas)

Downloading numpy-1.14.1-cp36-cp36m-manylinux1_x86_64.whl (12.2MB)

Collecting pytz>=2011k (from pandas)

Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)

Collecting python-dateutil>=2 (from pandas)

Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)

Collecting six>=1.5 (from python-dateutil>=2->pandas)

Downloading six-1.11.0-py2.py3-none-any.whl

Installing collected packages: numpy, pytz, six, python-dateutil, pandas

Successfully installed numpy-1.14.1 pandas-0.22.0 python-dateutil-2.6.1 pytz-2018.3 six-1.11.0

Removing intermediate container 2e4c030f8051

---> a71e1c314897

Successfully built a71e1c314897

Successfully tagged debian-pandas:latest

docker build -t debian-pandas -f Dockerfile.debian . --no-cache 0.07s user 0.06s system 0% cpu 13.605 total

Dockerfile.alpine

FROM python:3.6.4-alpine3.7

RUN apk --update add --no-cache g++

RUN pip install pandas

用熊猫和熊猫建立阿尔卑斯山的形象NumPy的:

[PandasDockerTest] time docker build -t alpine-pandas -f Dockerfile.alpine . --no-cache

Sending build context to Docker daemon 16.9kB

Step 1/3 : FROM python:3.6.4-alpine3.7

---> 4b00a94b6f26

Step 2/3 : RUN apk --update add --no-cache g++

---> Running in 4b0c32551e3f

fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/main/x86_64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz

fetch http://dl-cdn.alpinelinux.org/alpine/v3.7/community/x86_64/APKINDEX.tar.gz

(1/17) Upgrading musl (1.1.18-r2 -> 1.1.18-r3)

(2/17) Installing libgcc (6.4.0-r5)

(3/17) Installing libstdc++ (6.4.0-r5)

(4/17) Installing binutils-libs (2.28-r3)

(5/17) Installing binutils (2.28-r3)

(6/17) Installing gmp (6.1.2-r1)

(7/17) Installing isl (0.18-r0)

(8/17) Installing libgomp (6.4.0-r5)

(9/17) Installing libatomic (6.4.0-r5)

(10/17) Installing pkgconf (1.3.10-r0)

(11/17) Installing mpfr3 (3.1.5-r1)

(12/17) Installing mpc1 (1.0.3-r1)

(13/17) Installing gcc (6.4.0-r5)

(14/17) Installing musl-dev (1.1.18-r3)

(15/17) Installing libc-dev (0.7.1-r0)

(16/17) Installing g++ (6.4.0-r5)

(17/17) Upgrading musl-utils (1.1.18-r2 -> 1.1.18-r3)

Executing busybox-1.27.2-r7.trigger

OK: 184 MiB in 50 packages

Removing intermediate container 4b0c32551e3f

---> be26c3bf4e42

Step 3/3 : RUN pip install pandas

---> Running in 36f6024e5e2d

Collecting pandas

Downloading pandas-0.22.0.tar.gz (11.3MB)

Collecting python-dateutil>=2 (from pandas)

Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)

Collecting pytz>=2011k (from pandas)

Downloading pytz-2018.3-py2.py3-none-any.whl (509kB)

Collecting numpy>=1.9.0 (from pandas)

Downloading numpy-1.14.1.zip (4.9MB)

Collecting six>=1.5 (from python-dateutil>=2->pandas)

Downloading six-1.11.0-py2.py3-none-any.whl

Building wheels for collected packages: pandas, numpy

Running setup.py bdist_wheel for pandas: started

Running setup.py bdist_wheel for pandas: still running...

Running setup.py bdist_wheel for pandas: still running...

Running setup.py bdist_wheel for pandas: still running...

Running setup.py bdist_wheel for pandas: still running...

Running setup.py bdist_wheel for pandas: still running...

Running setup.py bdist_wheel for pandas: still running...

Running setup.py bdist_wheel for pandas: finished with status 'done'

Stored in directory: /root/.cache/pip/wheels/e8/ed/46/0596b51014f3cc49259e52dff9824e1c6fe352048a2656fc92

Running setup.py bdist_wheel for numpy: started

Running setup.py bdist_wheel for numpy: still running...

Running setup.py bdist_wheel for numpy: still running...

Running setup.py bdist_wheel for numpy: still running...

Running setup.py bdist_wheel for numpy: finished with status 'done'

Stored in directory: /root/.cache/pip/wheels/9d/cd/e1/4d418b16ea662e512349ef193ed9d9ff473af715110798c984

Successfully built pandas numpy

Installing collected packages: six, python-dateutil, pytz, numpy, pandas

Successfully installed numpy-1.14.1 pandas-0.22.0 python-dateutil-2.6.1 pytz-2018.3 six-1.11.0

Removing intermediate container 36f6024e5e2d

---> a93c59e6a106

Successfully built a93c59e6a106

Successfully tagged alpine-pandas:latest

docker build -t alpine-pandas -f Dockerfile.alpine . --no-cache 0.54s user 0.33s system 0% cpu 16:08.47 total

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值