蕴含等值式怎么理解_TensorFlow学习Program1——补充附录(7.1)数据预处理:正则化之直观理解、代码...

正则化的数学和代码实现

参考【Python数据预处理】

正则化主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

p-范数的计算公式:

equation?tex=%7C%7CX%7C%7C_p%3D%28%7Cx_1%7C%5Ep%2B%7Cx_2%7C%5Ep%2B...%2B%7Cx_n%7C%5Ep%29%5E%7B1%2Fp%7D

该方法主要应用于文本分类和聚类中。例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

  • 1.可以使用preprocessing.normalize()函数对指定数据进行转换:
X = [[ 1., -1., 2.],[ 2.,  0.,  0.],[ 0.,  1., -1.]]
X_normalized=preprocessing.normalize(X, norm='l2') #l2范数,不是12 
输出:[[ 0.40824829, -0.40824829,  0.81649658] [ 1., 0., 0.][ 0., 0.70710678, -0.70710678]]
  • 2. 可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换:

注意类似归一化代码,也存在fit_transform=fit+transform的写法

X_train=[[ 1., -1., 2.],[ 2.,  0.,  0.],[ 0.,  1., -1.]]
X_test=[[-1.,  1., 0.]]
normalizer=preprocessing.Normalizer().fit(X)
normalizer.transform(X_train)
normalizer.transform(X_test) 
与归一化的代码类似,也可以这么写
normalizer=preprocessing.Normalizer()
normalizer.fit_transform(X_train)
normalizer.transform(X_test)

4fd4e29c085b1d842476ad3830da91d7.png

正则化概念(Regularization,不是Normalization)

参考<机器学习中正则化项L1和L2的直观理解><一文搞懂深度学习正则化的L2范数>

机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种一般英文称作

equation?tex=l_1-norm
equation?tex=l_2-norm ,中文称作
L1正则化L2正则化,或者 L1范数L2范数

L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。下图是Python中Lasso回归的损失函数,式中加号后面一项

equation?tex=%5Calpha%7C%7C%5Comega%7C%7C_1 即为L1正则化项。

5323b0c18545a6aca1173e36ebc17f98.png

下图是Python中Ridge回归的损失函数,式中加号后面一项

equation?tex=%5Calpha%7C%7C%5Comega%7C%7C_1 即为L2正则化项。

edc38fd049ce1d2647e2abe489017192.png

一般回归分析中回归

equation?tex=%5Comega 表示特征的系数(也常用
equation?tex=%5Ctheta ),从上式可以看到正则化项是对系数做了处理(限制)。
L1正则化和L2正则化的说明如下:
  • L1正则化是指权值向量
    equation?tex=%5Comega 中各个元素的
    绝对值之和,通常表示为
    equation?tex=%7C%7C%5Comega%7C%7C_1
  • L2正则化是指权值向量
    equation?tex=%5Comega 中各个元素的
    平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为
    equation?tex=%7C%7C%5Comega%7C%7C_2

一般都会在正则化项之前添加一个系数,Python中用α表示,一些文章也用λ表示。这个系数需要用户指定。那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。

L1和L2正则化的直观理解

这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合

  • L1正则化和特征选择
    假设有如下带L1正则化的损失函数

equation?tex=J%3DJ_0%E2%80%8B%2B%CE%B1%5Csum_%7Bw%7D%7B%7Cw%7C%7D++%EF%BC%881%EF%BC%89%5C%5C

其中

equation?tex=J_0 是原始的损失函数,加号后面的一项是L1正则化项,α是正则化系数。注意到L1正则化是权值的
绝对值之和
equation?tex=J 是带有绝对值符号的函数,因此
equation?tex=J 是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数
equation?tex=J_0 后添加L1正则化项时,相当于对
equation?tex=J_0 做了一个约束。令
equation?tex=L%3D%CE%B1%5Csum_%7Bw%7D%7B%E2%88%A3w%E2%88%A3%7D ,则
equation?tex=J%3DJ_0%E2%80%8B%2BL ,此时我们的任务变成
在L约束下求出
equation?tex=J_0
​取最小值的解。考虑二维的情况,即只有两个权值w1和w2,此时
equation?tex=L%3D%E2%88%A3w_1%E2%88%A3%2B%E2%88%A3w_2%E2%88%A3 对于梯度下降法,求解J0 的过程可以画出等值线,同时L1正则化的函数L也可以在w1w2的二维平面上画出来。如下图:

433763b54dda880afe08d348988c2898.png
图1 L1正则化

5e9ab09aee14313b5fde2631e7a58f4f.png
图2 L2正则化

图中等值线是J0的等值线,黑色方形是L函数的图形。在图中,当J0 等值线与L图形首次相交的地方就是最优解。上图中J0与L在L的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是

equation?tex=%28w_1%2Cw_2%29%3D%280%2Cw%29 .可以直观想象,因为L函数有很多『突出的角』(二维情况下四个,多维情况下更多),J0与这些角接触的机率会远大于与L其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α,可以控制L图形的大小。α越小,L的图形越大(上图中的黑色方框);α越大,L的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值

equation?tex=%28w_1%2Cw_2%29%3D%280%2Cw%29
中的w可以取到很小的值。

类似,假设有如下带L2正则化的损失函数:

equation?tex=J%3DJ_0%E2%80%8B%2B%CE%B1%5Csum_%7Bw%7D%7Bw%5E2%7D++%EF%BC%882%EF%BC%89%5C%5C

同样可以画出他们在二维平面上的图形,如下:

25d8a9329acfb18271816f476fae4348.png
图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0 与L相交时使得w1或w2 等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

那为什么L2正则化可以获得值很小的参数?

以线性回归中的梯度下降法为例。假设要求的参数为θ,

equation?tex=h_%5Ctheta%28x%29 是我们的假设函数。线性回归一般使用平方差损失函数。单个样本的平方差是
equation?tex=%28h_%5Ctheta%28x%29+-+y%29%5E2 ,如果考虑所有样本,损失函数是对每个样本的平方差求和,假设有m个样本,线性回归的代价函数如下,为了后续处理方便,乘以一个常数
equation?tex=%5Cfrac%7B1%7D%7B2m%7D+ :

equation?tex=J%28%5Ctheta%29%3D%5Cfrac%7B1%7D%7B2m%7D+%5Csum_%7Bi%7D%5E%7Bm%7D%7B%28h_%5Ctheta%28x%5E%7B%28i%29%7D%29+-+y%5E%7B%28i%29%7D%29%5E2%7D+++%EF%BC%883%EF%BC%89%5C%5C

在梯度下降算法中,需要先对参数求导,得到梯度。梯度本身是上升最快的方向,为了让损失尽可能小,沿梯度的负方向更新参数即可。对于单个样本,先对某个参数θj求导:

f2d44d6a6a073e2998d60f4d99ae3d46.png

其中λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代,θj 都要先乘以一个小于1的因子,从而使得θj 不断减小,因此总得来看,θ是不断减小的。

最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

正则化参数的选择

L1正则化参数

通常越大的λ可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数:

equation?tex=F%28x%29%3Df%28x%29%2B%CE%BB%7C%7Cx%7C%7C_1%5C%5C

其中x是要估计的参数,相当于上文中提到的w以及θ. 注意到L1正则化在某些位置是不可导的,当λ足够大时可以使得F(x)在x=0时取到最小值。如下图:

7063d6c42f4fa4da4ca98f6be414227a.png
图3 L1正则化参数的选择

分别取λ=0.5和λ=2,可以看到越大的λ越容易使F(x)在x=0时取到最小值。

L2正则化参数

从公式5可以看到,λ越大,θj 衰减得越快。另一个理解可以参考图2,λ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。

Reference

过拟合的解释:为什么正则化能够降低过拟合 · 神经网络与深度学习

正则化的解释:正则化 · 神经网络与深度学习

正则化的解释:http://blog.csdn.net/u012162613/article/details/44261657

正则化的数学解释(一些图来源于这里):http://blog.csdn.net/zouxy09/article/details/24971995

深入理解L0,L1和L2正则化: https://blog.csdn.net/anshuai_aw1/article/details/89435414

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值