黎曼几何不一致的定理
元数学与元物理学(22)
李子
李晓露
摘要
本文证明了:黎曼几何学不一致,是假的理论;并且证明了广义相对论是假的理论;现代宇宙学是假的理论;超弦理论、M理论都是假的理论。
关键词 黎曼几何
希尔伯特计划
一致性
1.前言
欧几里得证明了毕达哥拉斯学派的“宇宙中的一切现象都能归结为整数或整数之比”的观点自相矛盾,导致了数学第一次危机。其结果是,数学家们抛弃了毕达哥拉斯主流学派的观点,诞生了新的至今仍是初中教科书内容的数学理论欧几里得几何学。
欧几里得几何学的五条公设:
、从任何一点到另一点可以引一条直线。
、每条直线都可以无限延长。
、以任意点为中心,以任意长为半径可以作圆周。
、凡直角都相等。
、平面上两直线被一直线所截,若截线一侧的两内角之和小于二直角,则此两线必相交于截线的这一侧。
2.非欧几何学的来源
近2000年数学界用欧几里得几何学前四个公设证明第五公设的失败,使数学家相信第五公设是独立的。通过修改第五公设,诞生了罗氏几何和黎曼几何。
欧几里得几何学,若去掉第五公设,则是绝对几何。
在绝对几何基础上增加另一个第五公设:“过已知直线外一点至少可以作两条直线与已知直线不相交”。则是罗氏几何学。
黎曼几何修改了欧几里得几何学公设中的第二公设和第五公设。
黎曼几何的:直线可以无限延长,但总的长度是有限的。
黎曼几何中的另一条基本规定(实质上的公设)是:在同一平面内任何两条直线都有公共点(交点)。
由欧几里得几何学可得到定理p:“三角形内角之和为180度”。
由黎曼几何学可得到定理r:“三角形内角之和大于180度”。
由罗氏几何学可得到定理q:“三角形内角之和小于180度”。
为了证实三角形内角之和究竟是多少,黎曼的老师数学家高斯,曾在地球上找三点,具体进行了测量,结果未有答案。显然,如果有确定的结果,则三个几何学只会有一个与事实相符,另外两个必然是与事实不符的错误理论。
数学家高斯最早发现非欧几何,但他至死都不发表,一定有他不发表的道理。即他认为正确的理论,就发表。他认为错误的理论,就坚决不发表。这是科学家对科学真理负责任的一种高尚品德。
3.非欧几何学的一致性证明
从希尔伯特规划证明论(元数学)诞生至今,数学界以一致性作为判断数学真理的标准。
意大利数学家贝特拉米(E.Beltrami,1835-1899)于1869年提出的常负曲率曲面模型(非欧几何学的欧氏模型),德国数学家克莱因(F.Klein,1849-1925)于1871年提出的射影平面模型和彭加勒在1882年提出的用自守函数解释的单位圆内部模型。这些模型证明了非欧几何学相对于欧几里得几何学是不矛盾的[1]。但要说明的是:以上数学家的非欧几何学的一致性证明,并未证明非欧几何学是一致的。仅证明了相对性,即证明了如果欧几里得几何学是不矛盾的,则非欧几何学必然是不矛盾的。
根据元数学希尔伯特计划[2],一致性是某数学理论成为真理的必要条件,因此,欧几里得几何学是真理,是非欧几何学成为真理的必要条件。
4.黎曼几何不一致的定理
黎曼平面几何是“二维”平面几何。所谓“二维”是以二维数轴为基础的。没有二维数轴,所谓“二维”平面几何只是空中楼阁。
然而一旦你通过实践,建立黎曼几何二维平面坐标系X、Y数轴后,其任何一维数轴都存在自相矛盾,这是导致黎曼平面几何、广义相对论自相矛盾的根源。
二维平面X,Y数轴的单位长,是测量二维物体长度、高度、三角形的边长、任意两点距离等的尺。通常以1厘米、1米、1千米等为单位长。对于宇宙宏观世界,通常用1光年、1亿光年为单位长。而单位长在数轴的均匀分布可用数值1、2、3、…标示在数轴上。
2.1
定理一:黎曼几何的一维数轴与代数存在矛盾。
证明一:(用反证法)
假设黎曼几何的数轴与代数不矛盾。
以黎曼几何测地线X数轴为例,其X数轴测地线,相当于是在球面上的软尺,可以测量球面上任意两点的距离L。
根据假设可得:黎曼几何数轴上的数1,2,3,…,符合代数(数论)的定理。则在“直线”X数轴上有:1+1=2,1+1+1=3,…。n个1相加,其长度x=1×n。等于n。符合代数加法和乘法定理。如测量太阳与地球的距离L,取单位长为1km,就可以应用光速、时间和代数的乘法定理计算出L的值。又如在球面上的直角边边长为10cm的等腰直角三角形,在单位长为1cm时,其边长符合代数加法和乘法定理。该三角形内角之和大于180度。
然而,当n趋向无穷大,即n→∝时,用单位长测量、计算X数轴的长度时,在代数有极限定理:lim
x=∝。而黎曼几何有公设:直线(X数轴)可以无限延长,但总的长度是有限的。由此可得:lim
x≠∝。二者互相矛盾。代数理论否定黎曼几何公设,且黎曼几何公设也否定代数的定理。因此,黎曼几何的数轴与代数不矛盾的假设不可能成立。
本定理证毕。
证明二:设在黎曼几何平面建立二维坐标系的X轴和Y轴。
黎曼几何的与黎曼几何坐标轴存在逻辑矛盾。
在代数与平面解析几何理论中,代数的直线方程表示为:y=kx+b,该方程与黎曼几何公理矛盾。
(1)黎曼几何的:直线可以无限延长,但总的长度是有限的。
而代数的直线方程为:y=kx+b。当x→∝,其总的长度不可能是有限的。
(2)黎曼几何的一条基本规定:在同一平面内任何两条直线都有公共点(交点)。
而2条代数的直线方程:y1=k1x+b,y2=k2x+c,若斜率k1=k2,b≠c,则两条直线平行,且该二元一次方程组无解,两条直线不可能有交点(相同的解)。但黎曼几何的基本规定:任何两条直线必相交。二者存在逻辑矛盾。
本定理证毕。
定理一证明了黎曼几何与代数存在矛盾。
由百度百科“黎曼度规”可得:在,度量张量(英语:Metric
tensor)又叫黎曼度量,物理学译为度规张量,是指用来衡量中距离,面积及角度的二阶。
在黎曼几何宇宙空间任意两点a、b的距离L,a到b的弧线长度L的定义、两个切矢量的夹角的定义、导出度量张量的矩阵形式G的代数方程、极坐标(r,Q)到直角坐标(x,y)的坐标变换、弧线长度转为方程及其推导等都是代数的内容。
定理二:黎曼几何是不一致的。
证明:根据定理一可得:如果代数理论正确,则黎曼几何的:“直线可以无限延长,但总的长度是有限的。”必然是错误的。并且,黎曼几何的另一条基本规定:“在同一平面内任何两条直线都有公共点(交点)。”也必然是错误的。
由此可得:黎曼几何必然是错误的。
而如果代数不正确,则黎曼几何用代数作出的定义和其推导的所有内容全部不正确,由此也必然可得:黎曼几何是错误的。
因黎曼几何包含有很多代数内容,若去掉黎曼几何的代数内容,则黎曼几何也不能存在,根据定理一可得:黎曼几何必然自相矛盾,不一致。
本定理证毕。
判断黎曼几何是不是真理,是由元数学根据黎曼几何理论是否一致,来判定的,而不是根据物理学来判定的。
根据元数学希尔伯特计划[2]对理论一致性的要求可得:黎曼几何绝对不是真理。
5.黎曼几何学的真实性
对于真实世界一个确定的、真实的直角边为10cm的等腰直角三角形,其内角之和究竟是多少?
根据欧几里得几何学定理p:“该三角形内角之和为180度”。
根据黎曼几何学定理r:“该三角形内角之和大于180度”。
而根据代数的锐角三角函数的定理:
Tan∠BAC=BC÷AC=1,则∠BAC=45°。同理,∠ABC=45°,则此内角之和为180°。
如果代数正确,则由此可得:欧几里得几何学定理p是真命题,黎曼几何学定理r是假命题。并由此可得:黎曼几何学是假的理论。
爱因斯坦对黎曼几何并不很了解,当时他是向数学家请教了黎曼几何后,才创作了广义相对论。至今数学界都没有黎曼几何一致性的绝对证明。他盲目相信黎曼几何是正确的,并大胆将黎曼几何应用于物理学,实际上是在冒险。在逻辑论证上犯了论据(黎曼几何)虚假的错误。
现在主流物理学家们仍迷信爱因斯坦和广义相对论,坚信代数并且相信黎曼几何学是真理,这可用反证法予以反驳。
证明:用反证法。
假设黎曼几何学符合事实,是真实的。则由假设必然可得:黎曼几何学定理r:“直角边为10cm的等腰直角三角形,该三角形内角之和大于180度”。是真命题。由此可得:欧几里得几何学定理p“直角边为10cm的等腰直角三角形,该三角形内角之和为180度”是假命题,则欧几里得几何学不是真理。但是,数学界认可黎曼几何,是因为意大利数学家贝特拉米等证明了非欧几何学相对于欧几里得几何学是不矛盾的。如果欧几里得几何学不是真理,则黎曼几何学的相对欧几里得几何学一致性证明就毫无意义,并且黎曼几何学的绝对一致性并未得到证明。根据元数学对理论一致性的要求可得:黎曼几何学根本不能确定是数学的真理。除非能证明黎曼几何学是一致的。但至今黎曼几何学的一致性完全依靠欧几里得几何是真理。
物理学家对黎曼几何学的肯定,得不到元数学[2]理论的支持。而本文定理二已证明了黎曼几何学不一致,根据元数学希尔伯特计划[2]对理论一致性的要求可得:因黎曼几何学自相矛盾,所以黎曼几何学不是真理。
广义相对论四维时空中的三维空间,是黎曼几何三维空间。因黎曼几何学不是真理,所以,广义相对论也不是真理。而现代宇宙学是建立在广义相对论基础之上的,也不是真理。
6。黎曼几何与普通打印机图形事实不相符
物理学家通常根据实验事实来判定一个理论是否是真理。
理论与事实相符,就是真理,与事实不符则是谬论。
即使用这种判定方法,我们也可以通过简单的实践,来
判断黎曼几何的真伪。用黎曼几何二维直角坐标系,由普通二维打印机打印直角边为10cm的等腰直角三角形即可。
如在黎曼几何二维直角坐标系,选三个点坐标(x=0,y=0)、(x=1,y=0)、(x=0,y=1),用普通二维打印机打印连接三点的等腰直角三角形情况会怎样?
实践的事实告诉我们:只有欧几里得平面几何的直角边为10cm的等腰直角三角形。
根据定理一可得:因黎曼几何公设否定代数加法定理,所以无法用测地线软尺用单位长测量10cm的直角边。因此,黎曼几何直角边为10cm的等腰直角三角形在事实上根本不存在。
事实胜于雄辩。任何一个坚信黎曼几何正确的人,你可以打印或画一个黎曼几何直角边为10cm的等腰直角三角形给大家看看,给大家讲讲你的直角边为10cm是怎样测量、计算出来的。黎曼几何公设中直线的有限总长度,究竟是多少具体数值?
普通打印机打印的三角形图形,其实践事实的证据,完全能证实黎曼几何是假的理论。
7。黎曼几何与3D打印产品事实不相符
将三种几何都建立三维直角坐标系,用三维立体几何来解决三维世界的几何问题,最容易发现非欧几何学的错误,因事实上非欧几何学无法建立三维坐标系。
可以通过很简单的实验进行验证。不妨在一个标准的椭圆外壳上画一个黎曼平面几何直角坐标,先确定OX轴、OY轴二维直角坐标,组成XOY直角平面,然后建立第三维坐标OZ轴,亲手做一个黎曼立体几何的三维直角坐标系数轴。事实告诉我们:在XOZ平面上,OX轴、OZ轴事实上无法互相垂直,且根本不能确定OZ轴在空间的位置。并且无法用XOY平面的二维直角坐标,套在XOZ平面上。实践的事实证实:不仅黎曼立体几何三个数轴互相垂直的事实上不存在,而且OZ轴在三维空间的固定位置根本不存在,宇宙空间任意一点(原点除外)的黎曼三维坐标(x,y,z)
都不存在。该事实清楚证明:黎曼三维立体几何与事实完全不相符,完全是错误的理论。
目前世界上任何一台3D打印机的三维直角坐标数据,都只能是欧几里得几何三维直角坐标数据。宇宙空间根本不存在黎曼几何三维坐标(x,y,z)的数据。
3D打印机的三维直角坐标(x,y,z)的数据,是一个事实清楚,且确定、真实、充分的证据,足以证明宇宙的三维空间是欧几里得几何三维空间。
3D打印机产品的事实清楚,证据确定、真实、充分,足以证实以下结论:
1。欧几里得三维立体几何与3D打印产品的数据,与事实完全相符,欧几里得三维立体几何是真理。
2。黎曼三维立体几何与3D打印产品的事实不相符。黎曼三维立体几何事实上不存在,属于假理论。
3。广义相对论的四维时空中的黎曼三维立体几何是假的理论,因此广义相对论是假的理论,属于伪科学。
4.建立在广义相对论基础上的现代宇宙学,是假的理论,也属于伪科学。
5.2016年2月11日美国科研人员宣布:当两个黑洞于约13亿年前碰撞,两个巨大质量结合所传送出的扰动,于2015年9月14日抵达地球,被地球上的精密仪器侦测到。证实了爱因斯坦100年前所做的预测。LIGO科研人员的发现和其用广义相对论的推论,是虚假科研成果。
6.中国耗资150亿,依据广义相对论设计的“天琴计划”,是一个错误的决策,应该停止。
7.因广义相对论不正确,则全世界所有以广义相对论为基础上的论文都是虚假科研成果,包括霍金的奇点定理和黑洞理论。
3D打印机的欧几里得立体几何三维直角坐标系及其数据与3D打印产品实际数据相符的证据还证实:
8.如果十维时空的超弦理论是真实的,则现实中的立体物品A与3D打印该物品的产品B都具有九维空间。因3D打印机并没有非欧6维和其数据,理论上3D三维打印机不可能生产出九维产品B的(如普通打印机不可能生产出三维立体产品一样),而事实却相反。因此,3D打印的事实证据证实:宇宙根本不存在黎曼几何三维空间,更不存在九维空间的物质。超弦理论的九维空间是纯主观虚构的假理论,没有任何实践的证据证实,属于伪科学。
9.同理,在十维超弦理论基础上增加一维的M理论,也是假的理论,属于伪科学。
参考文献
[1]
第三次数学危机,胡作玄著,四川:四川人民出版社,1985年。
[2]
百度百科“希尔伯特计划”
[3]
百度百科“非欧几何学”
[4]
黎曼几何专题辩论赛(3)、(4),李子、李晓露
[5]
第四次数学危机及其影响(6),李子、李晓露
[6]
李子逻辑学,李子、李晓露
[7]
广义相对论专题辩论赛(9)、(10),李子、李晓露
[8]
元数学与元物理学(6),李子、李晓露
[9]欧几里得与相对论(1)、(2),李子、李晓露