PyTorch实现DenseNet深度学习模型

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:DenseNet通过增加网络内部连接密度来促进特征重用,解决梯度消失问题,提高学习效率。在PyTorch中实现DenseNet需要掌握卷积层、批量归一化、激活函数、过渡层、稠密块、增长率、连接策略等关键概念。本代码涵盖数据预处理、模型构建、训练和测试等环节,有助于深入理解DenseNet的设计与应用。 DenseNet

1. DenseNet网络结构简介

DenseNet(Densely Connected Convolutional Networks)是一种先进的卷积神经网络结构,它通过在每一层与后续所有层之间建立直接连接,大大提高了网络内部特征的重用性。在本章中,我们将先从DenseNet的基本概念开始,继而探讨其在图像识别、分类等任务中的应用,并简介其在深度学习领域的影响力。

DenseNet的设计思想源于传统的卷积网络架构,但其特点在于网络中的每一层都接收前一层的特征图作为输入,同时将自身的特征图传递给后续层。这种设计极大地增强了特征传播和梯度流动,使得网络能够使用更少的参数达到更高的准确率。

DenseNet的优势在于它有效地缓解了梯度消失问题,提高了网络参数利用率,而且由于特征重用,显著减少了计算资源的需求。在下一章,我们将探讨如何在PyTorch框架中实现这一强大的网络结构。

2. PyTorch实现DenseNet的代码关键点

2.1 PyTorch框架概述

2.1.1 PyTorch基础概念

PyTorch是当前深度学习领域广泛使用的开源框架之一,它以动态计算图(define-by-run approach)为特点,提供了灵活的操作接口以及易用的调试环境。PyTorch的核心模块包括 torch , torch.nn , torch.optim , 和 torch.utils.data 等,涵盖从数据加载到模型构建,再到训练优化的整个流程。

2.1.2 PyTorch与DenseNet的结合

在PyTorch中实现DenseNet,需要关注如何在框架中搭建其特有的稠密连接层,和如何在不同的层之间传递特征图(feature maps)。DenseNet的实现可以按照以下步骤进行:定义网络结构(DenseBlock和TransitionLayer),初始化网络参数,实现前向传播函数。

2.2 DenseNet的代码实现流程

2.2.1 初始化网络结构

初始化DenseNet网络结构时,通常从定义稠密块(DenseBlock)和过渡层(TransitionLayer)的类开始。每个稠密块由多个卷积层组成,而过渡层则负责调整特征图大小以降低计算复杂度。

class DenseBlock(nn.Module):
    def __init__(self, num_layers, input_features, output_features):
        super(DenseBlock, self).__init__()
        # 初始化稠密块中的层
        self.layers = nn.Sequential(*[
            nn.Sequential(
                nn.Conv2d(input_features + i * output_features, output_features, kernel_size=3, padding=1),
                nn.BatchNorm2d(output_features),
                nn.ReLU(inplace=True)
            ) for i in range(num_layers)
        ])

    def forward(self, x):
        # 实现前向传播
        new_features = []
        for layer in self.layers:
            x = layer(x)
            new_features.append(x)
            x = torch.cat(new_features, 1)
        return x
2.2.2 网络参数的定义和初始化

定义和初始化网络参数是实现DenseNet的关键步骤之一。通常会在构造函数中初始化这些参数,并设置适当的默认值以方便后续实验。

class DenseNet(nn.Module):
    def __init__(self):
        super(DenseNet, self).__init__()
        # 定义第一个稠密块和过渡层
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.db1 = DenseBlock(num_layers=4, input_features=64, output_features=16)
        self.trans1 = TransitionLayer(num_features=256)

    def forward(self, x):
        # 前向传播逻辑
        x = self.trans1(self.db1(self.conv1(x)))
        return x
2.2.3 前向传播的实现

前向传播的实现涉及多个层的堆叠和特征图的逐步更新。前向传播函数需要正确地将特征图传递到每一层,并应用激活函数和批归一化(如果存在)。

2.3 关键组件的代码解读

2.3.1 卷积层和批量归一化的实现

在DenseNet中,每个卷积层都紧跟一个批量归一化层和ReLU激活函数。以下是一个卷积层和批量归一化结合使用的示例代码块。

class ConvBNReLU(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
        super(ConvBNReLU, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        return self.relu(self.bn(self.conv(x)))
2.3.2 激活函数的选择和作用

激活函数的选择对网络性能影响很大。PyTorch提供了多种激活函数,其中ReLU是最常用的选择之一。激活函数的作用是引入非线性,帮助网络学习复杂的映射关系。

在DenseNet的上下文中,ReLU函数被用作激活函数,它在前向传播中引入非线性,但其梯度在负区间为零,可能导致梯度消失问题。为缓解这一问题,通常在输入的残差连接中保留了原始输入,以确保有梯度能回流到前面的层。

通过本章节的介绍,您应该对如何使用PyTorch框架构建DenseNet有了初步的理解。接下来的章节将深入探讨DenseNet的各个关键组件,包括卷积层、批量归一化、激活函数的具体应用,以及如何实现它们的细节。

3. 卷积层、批量归一化、激活函数的具体应用

在深度学习模型中,卷积层、批量归一化(Batch Normalization)以及激活函数是构建网络的基础组件。理解并优化这些组件的应用是提升模型性能的关键。本章将深入探讨这些组件的使用和优化方法。

3.1 卷积层的使用和优化

3.1.1 不同卷积层的设计思路

卷积层是卷积神经网络(CNN)的核心,它通过卷积操作提取输入数据的特征。不同类型的卷积层设计思路主要体现在卷积核的大小、步长(stride)、填充(padding)以及是否使用分组卷积等方面。

例如,在DenseNet中,常用的卷积层设计思路包括使用较小的卷积核和较深的网络结构。小卷积核可以减少模型参数量和计算量,而深网络可以提供更加丰富的特征表示能力。

代码块展示一个PyTorch中的卷积层实现,其中包含了一些常见的参数配置:

import torch.nn as nn

class ConvLayer(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0):
        super(ConvLayer, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)

    def forward(self, x):
        return self.conv(x)

3.1.2 卷积层参数的调整技巧

在实践中,调整卷积层参数是优化网络性能的重要手段。以下是一些常见的调整技巧:

  • 使用不同大小的卷积核 :较小的卷积核(如3x3)能够减少模型参数,而较大的卷积核(如5x5或7x7)可以捕获更广泛的上下文信息。选择合适的卷积核大小对模型性能有很大影响。
  • 调整步长和填充 :通过调整步长和填充,可以控制卷积操作后特征图的尺寸。例如,使用 stride=2 可以实现下采样功能,减少特征图尺寸,从而降低计算量。
  • 引入残差连接 :残差连接可以有效解决深层网络中的梯度消失问题。通过在卷积层后添加跳跃连接,可以帮助梯度流动,加快训练速度。
  • 使用分组卷积 :分组卷积可以减少模型参数量和计算量,同时保持模型的特征提取能力。例如,在DenseNet中,可以将输入特征图分为几个组,每个组执行单独的卷积操作。

表格展示不同参数下卷积层输出特征图尺寸的计算方法:

| 参数设置 | 输出尺寸计算公式 | 说明 | | --- | --- | --- | | 正常卷积 | $\frac{W-F+2P}{S}+1$ | W是输入尺寸,F是卷积核尺寸,P是填充,S是步长 | | 下采样卷积 | $\frac{W-F+2P}{S}+1$ | S通常设为2 | | 分组卷积 | 分组计算各自尺寸后拼接 | 输入输出通道均被分组 |

3.2 批量归一化的原理与效果

3.2.1 批量归一化的数学原理

批量归一化(Batch Normalization, BN)是一种深度学习中用于加速网络训练、减轻梯度消失和爆炸问题的技术。其基本思想是在每个小批量(minibatch)上,对输入数据进行归一化处理,使得它们的均值为0,方差为1。

设$x_i$为小批量中的一个输入,其均值和方差分别为:

$$ \mu_B = \frac{1}{m} \sum_{i=1}^{m} x_i $$ $$ \sigma_B^2 = \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 $$

则归一化后的值为:

$$ \hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} $$

其中$\epsilon$是一个小常数,用于防止除以零。为了使数据保持表达能力,通常还会引入可学习的参数$\gamma$和$\beta$进行缩放和平移:

$$ y_i = \gamma \hat{x}_i + \beta $$

这样,批量归一化不仅能够加速训练,还能作为一种正则化手段减少过拟合。

3.2.2 批量归一化对网络训练的影响

批量归一化对网络训练有显著的影响。以下是其在训练过程中的一些作用:

  • 减少内部协变量偏移 :随着网络的更新,前一层的分布可能发生变化。BN通过在每一层独立地规范化输入,解决了这一问题。
  • 允许更高的学习率 :由于 BN 减少了输入分布的变化,因此可以使用更高的学习率,而不必担心梯度爆炸问题。
  • 减少对初始化的依赖 :通过 BN,网络对权重的初始值不再那么敏感,训练过程更加稳定。
  • 加速收敛速度 :BN 有助于模型更快地收敛,因为它使每层的输入分布更加稳定。

3.3 激活函数的作用与选择

3.3.1 常用激活函数的特点

激活函数在深度神经网络中扮演着至关重要的角色。它为网络引入非线性因素,使网络能够学习复杂的特征。以下是一些常用的激活函数及其特点:

  • ReLU (Rectified Linear Unit) :$\max(0, x)$。ReLU 是最常用的激活函数,它简单且计算效率高,能够加速网络收敛。缺点是存在“死亡ReLU”问题,即一些神经元可能永久不激活。
  • Leaky ReLU :$\max(\alpha x, x)$,其中$\alpha$是一个小于1的常数。Leaky ReLU是ReLU的一个改进版本,防止了“死亡ReLU”问题。
  • Parametric ReLU (PReLU) :$\max(\alpha_i x, x)$,其中$\alpha_i$是一个可学习的参数。PReLU是Leaky ReLU的泛化。
  • Sigmoid :$\frac{1}{1+e^{-x}}$。Sigmoid函数将输入值映射到0到1之间,但梯度消失的问题限制了其在深层网络中的使用。
  • Tanh :$\frac{e^x - e^{-x}}{e^x + e^{-x}}$。Tanh函数类似于Sigmoid,但输出范围是-1到1。同样存在梯度消失问题。

表格展示不同激活函数的优缺点:

| 激活函数 | 优点 | 缺点 | | --- | --- | --- | | ReLU | 简单、计算效率高、加速收敛 | 存在死亡ReLU问题 | | Leaky ReLU | 解决ReLU的死亡ReLU问题 | 没有本质上的改进 | | PReLU | 参数化版本,可微分 | 可能会增加模型复杂性 | | Sigmoid | 平滑且连续 | 梯度消失问题 | | Tanh | 平滑且连续,输出为零中心 | 梯度消失问题 |

3.3.2 如何选择合适的激活函数

选择合适的激活函数时,通常需要考虑以下几个因素:

  • 网络深度 :在深层网络中,使用ReLU或其变体通常能取得更好的效果,因为它们能够缓解梯度消失问题。
  • 数据特性 :如果数据本身是非负的,可能不需要Sigmoid或Tanh,而使用ReLU或Leaky ReLU效果更好。
  • 训练效率 :ReLU及其变体通常具有更快的训练速度,因为它们的计算更简单。
  • 过拟合问题 :如果模型存在过拟合问题,可以考虑使用L1或L2正则化,或者改变网络结构。

最终,选择激活函数往往需要通过实验来确定最佳选项。不同的任务和数据集可能需要不同的激活函数来获得最优性能。在实践中,通常首选ReLU或其变体,并在必要时尝试其他激活函数来观察对性能的影响。

4. 过渡层和稠密块的设计与作用

4.1 过渡层的结构和功能

4.1.1 过渡层的代码实现

在DenseNet的架构中,过渡层(Transition Layers)负责在稠密块之间进行特征的压缩与降维,以避免过快的特征增长导致的计算和内存开销。过渡层通常包括卷积层、批量归一化层和池化层。下面是一个PyTorch实现过渡层的代码示例:

import torch
import torch.nn as nn
import torch.nn.functional as F

class Transition(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Transition, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
        self.bn = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.pool = nn.AvgPool2d(kernel_size=2, stride=2)

    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.pool(out)
        return out

在这段代码中,我们首先定义了一个 Transition 类,其构造函数 __init__ 接受输入和输出通道数作为参数。在 forward 方法中,首先通过一个 1x1 卷积层来减少通道数,随后进行批量归一化和ReLU激活,最后通过一个 2x2 的平均池化层来降低特征图的尺寸。

4.1.2 过渡层对特征压缩的影响

过渡层对于维持DenseNet性能和效率至关重要。通过减少每层的输入通道数,过渡层有效控制了模型的宽度和计算量。在特征图尺寸减半的同时,减少的通道数可平衡模型的深度与宽度,避免了过拟合问题,并且允许更深层次的网络结构。

过渡层的实现方式将影响DenseNet的性能。例如,不同的池化策略(平均池化、最大池化)或不同的卷积核大小都会对最终效果产生显著影响。在实际应用中,这些参数需要根据具体任务和数据集进行调整。

4.2 稠密块的构建与优化

4.2.1 稠密块的基本组成

稠密块(Dense Block)是DenseNet的核心组件,每一层接收前面所有层的特征作为输入,并将自身的特征传递给后续所有层。稠密块的实现涉及对特征图的拼接和卷积层的堆叠。以下是一个简单的稠密块实现示例:

class DenseBlock(nn.Module):
    def __init__(self, num_layers, in_channels, growth_rate):
        super(DenseBlock, self).__init__()
        layers = []
        for i in range(num_layers):
            layers.append(nn.Conv2d(in_channels + i * growth_rate, growth_rate, kernel_size=3, padding=1))
            layers.append(nn.BatchNorm2d(growth_rate))
            layers.append(nn.ReLU(inplace=True))
        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        new_features = []
        out = x
        for layer in self.layers:
            out = layer(out)
            new_features.append(out)
            x = torch.cat(new_features, dim=1)
        return x

在这个实现中, DenseBlock 类接受 num_layers in_channels growth_rate 作为构造参数。 forward 方法中,每一层的输出被添加到特征列表中,并与先前所有层的特征图拼接起来,形成下一层的输入。

4.2.2 稠密块在DenseNet中的角色

稠密块中的每个层都能够获取到前面所有层的特征,这种"连接所有层"的设计使得特征重用达到最大化,并促进了特征的传播。它有助于模型捕捉到更深层次和更丰富的特征表示。

稠密块在实际应用中可能需要优化,例如引入瓶颈层(1x1卷积)来减少计算量、调整层间连接的策略、或者引入注意力机制以提升特征的选择性。通过这些优化手段,可以使得稠密块更适应复杂任务的需求,并提升模型性能。

下面的表格展示了不同大小稠密块对模型性能的潜在影响:

| 稠密块大小 | 参数数量 | 性能 | |------------|----------|------| | 6层 | 较少 | 中等 | | 12层 | 中等 | 较高 | | 24层 | 较多 | 最高 |

在实现稠密块时,代码逻辑和参数选择需要依据模型的深度和性能需求进行调整。

5. 增长率对DenseNet性能的影响

5.1 增长率的定义及其对模型的影响

5.1.1 增长率的理论基础

在DenseNet网络结构中,增长率(growth rate)是指在稠密块中,每层新增特征图数量的参数。该参数定义了网络的深度和宽度之间的关系。增长率通过控制每层增加的特征图数量,影响整个网络的容量。设定较大的增长率会使网络学习更加复杂的特征表示,但同时也增加了模型的计算量和内存消耗。反之,较小的增长率虽然降低了计算负担,但可能限制了网络的学习能力。

增长率对模型的影响主要体现在以下几个方面:

  • 网络性能 :增长率较高通常能够提升模型在训练集上的表现,但同时也可能引入过拟合现象。
  • 计算效率 :增长率越大,模型的参数量和计算量都会显著增加。
  • 内存消耗 :内存消耗与增长率成正比,较大的增长率需要更多的显存支持。

5.1.2 不同增长率模型的对比分析

通过对比不同增长率配置的DenseNet模型,我们可以发现模型性能与增长率之间的关系。一般来说,模型的预测精度会随着增长率的提高而提高,但增长到一定程度后,性能提升会逐渐减缓甚至出现下降趋势。这是由于过高的增长率可能会导致网络过于复杂,难以训练,或者发生过拟合现象。

在实际应用中,选择增长率需要根据具体任务和硬件资源进行权衡。对于计算资源有限的情况,可以适当降低增长率以减少模型复杂度;对于需要较高性能的场景,则可以尝试提高增长率。

5.2 调整增长率的策略和实例

5.2.1 增长率调整的方法

调整增长率可以按照以下步骤进行:

  1. 基准模型构建 :首先构建一个具有标准增长率的DenseNet模型作为基准。
  2. 增长率调整 :然后通过修改模型代码中定义增长率的参数,构建具有不同增长率的新模型。
  3. 模型训练与验证 :在相同的条件下训练这些模型,并使用验证集进行评估。
  4. 性能分析 :分析不同增长率下模型的性能,包括准确率、计算效率、内存消耗等指标。
  5. 最终决策 :根据性能分析的结果选择最优的增长率。

5.2.2 实际案例中的增长率选择

在实际案例中,增长率的选择应当与具体任务的需求相结合。例如,在一个图像分类任务中,如果任务对于精度的要求很高,而计算资源也相对充足,可以考虑选择较高的增长率。如果任务对于实时性的要求较高,或者可用的计算资源有限,那么应当选择一个较低的增长率。

以下是一个增长率调整的示例代码,展示了如何通过修改DenseNet模型中增长率参数来进行调整。

import torch
import torch.nn as nn
from torchvision.models import densenet

def modify_growth_rate(model, new_growth_rate):
    # 假设 DenseNet 使用了预定义的增长率
    growth_rate = model.classifier.in_features

    # 修改线性分类器的输入特征数以匹配新的增长率
    model.classifier = nn.Linear(model.classifier.in_features // growth_rate * new_growth_rate, num_classes)

    # 更新***et模型的growth_rate参数
    model.features.denseblock1.denselayer1.growth_rate = new_growth_rate
    # 更新后续的denselayer的增长率
    # ...

# 修改增长率并重新训练模型
# new_growth_rate = ... # 设定新的增长率值
# modified_model = modify_growth_rate(original_model, new_growth_rate)

在上述代码中, original_model 是一个已经定义好的DenseNet模型。函数 modify_growth_rate 接受这个模型和一个新的增长率值作为输入,然后调整模型中的增长率参数。需要注意的是,在模型定义中,增长率参数可能涉及到多个部分,需要同时更新以保证一致性。

6. 直接连接策略的原理与应用

6.1 直接连接的理论基础

直接连接(Concatenation)是DenseNet中的一项关键技术,它的工作机制是将前面所有层的输出作为当前层的输入,从而在模型的不同层之间构建了直接的连接路径。这一策略的设计初衷是为了强化特征的传递,允许梯度直接从输出层流向输入层,这样可以有效缓解深层网络中梯度消失的问题。

6.1.1 直接连接的工作机制

直接连接通过逐层累积前一层的特征映射来实现。在DenseNet的每个稠密块中,新的层都会接收之前所有层的特征映射,这些映射通过直接连接拼接在一起,形成当前层的输入。这样不仅增加了特征的多样性,同时也确保了网络中每一层都可以访问到其前面所有层的信息。

6.1.2 直接连接对梯度传播的作用

在反向传播过程中,直接连接允许梯度直接传回更早的层,而不需要经过中间所有的层。这显著提高了深层网络中的梯度传播效率,因为梯度在传递过程中不会因为多次相乘而逐渐衰减。此外,直接连接也使得网络参数的训练更加稳定,因为每一层的梯度都直接依赖于网络输出,从而避免了由于参数更新带来的问题。

6.2 直接连接在模型训练中的实践

在实际的模型训练中,直接连接的实现涉及到对特征映射的管理和高效的内存使用。接下来,我们将探讨如何在代码中实现直接连接,并展示一些调优直接连接策略的案例。

6.2.1 实现直接连接的代码技巧

在PyTorch中实现直接连接通常使用torch.cat()函数,它可以在指定的维度上对输入的张量序列进行拼接。以下是一个简化的代码示例,演示如何在DenseNet的稠密块中使用直接连接:

import torch
import torch.nn as nn
import torch.nn.functional as F

class DenseBlock(nn.Module):
    def __init__(self, num_layers, num_features):
        super(DenseBlock, self).__init__()
        layers = []
        for i in range(num_layers):
            layers.append(nn.Conv2d(num_features + i * growth_rate, growth_rate, kernel_size=3, padding=1))
            layers.append(nn.BatchNorm2d(growth_rate))
            layers.append(nn.ReLU(inplace=True))
        self.layers = nn.Sequential(*layers)

    def forward(self, x):
        new_features = []
        for layer in self.layers:
            x = layer(x)
            new_features.append(x)
            x = torch.cat(new_features, 1)  # 使用直接连接
        return x

# 假设growth_rate为32,num_layers为4,num_features为16
dense_block = DenseBlock(4, 16)
input_tensor = torch.randn(1, 16, 32, 32)  # 假设输入是一个16通道的32x32的特征图
output = dense_block(input_tensor)

在上述代码中, num_layers 是该稠密块中层数的数量, num_features 是输入特征图的通道数。每一层的输出都会被添加到 new_features 列表中,然后使用 torch.cat() 函数将其与之前的特征图进行拼接。

6.2.2 直接连接策略的调优案例

在实际应用中,直接连接策略可以通过调整稠密块中层数的数量来优化网络性能。一个常见的调优策略是,在网络的早期阶段使用更多的层(例如,每个稠密块有更多层),因为这一阶段特征的丰富度和多样性对模型性能有显著影响。

在下面的案例中,我们将探讨不同层数对模型训练的影响:

# 对比两个稠密块,一个包含3层,另一个包含5层
dense_block_3 = DenseBlock(3, 16)
dense_block_5 = DenseBlock(5, 16)

# 假设输入张量
input_tensor = torch.randn(1, 16, 32, 32)

output_3 = dense_block_3(input_tensor)
output_5 = dense_block_5(input_tensor)

# 计算输出的通道数
print("Output of DenseBlock with 3 layers has", output_3.shape[1], "channels")
print("Output of DenseBlock with 5 layers has", output_5.shape[1], "channels")

通过比较不同稠密块输出的通道数量,可以评估直接连接对特征丰富度的影响。一般而言,通道数越多,特征表达的丰富性越高,但是也要注意避免过度增加模型参数导致的过拟合问题。

在调优直接连接策略时,需要权衡模型的性能和计算资源的消耗。通常,对层数和增长率的调整需要根据具体的任务和数据集进行多次实验,以达到最优的模型效果。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:DenseNet通过增加网络内部连接密度来促进特征重用,解决梯度消失问题,提高学习效率。在PyTorch中实现DenseNet需要掌握卷积层、批量归一化、激活函数、过渡层、稠密块、增长率、连接策略等关键概念。本代码涵盖数据预处理、模型构建、训练和测试等环节,有助于深入理解DenseNet的设计与应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值