宋健人口模型 matlab,一阶常微分方程模型-人口模型与预测

本文通过数学建模探讨了一阶常微分方程在人口预测中的应用,对比了指数增长模型和Logistic模型。使用MATLAB进行数值求解和图形分析,发现Logistic模型在1998年预测人口数与实际数据最接近。文章还展示了MATLAB源代码,用于模拟和比较两种模型的预测结果。
摘要由CSDN通过智能技术生成

辽宁工程技术大学

数 学 建 模 课 程 成 绩 评 定 表

赵常新 魏文楷 潘洋 一阶常微分方程模型—人口模型与预测

数学建模

一阶常微分方程模型—人口模型与预测

一.摘要:

二.模型的背景问题描述

三.模型假设

四.分析与建立模型

下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(t0),

N0101654万人,Nm200000万人。

要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。

(2)建立中国人口的Logistic模型,并用该模型进行预测,与实际人口数据进行比较。

(3)利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。

赵常新 魏文楷 潘洋 一阶常微分方程模型—人口模型与预测

(4)利用MATLAB图形,画出两种预测模型的误差比较图,并分别标出其误差。

模型一:指数增长模型(马尔萨斯(Malthus)模型)

假设:人口净增长率r是一常数

符号:x(t)t时刻时的人口,可微函数x0t0时的人口 则r

x(tt)x(t)

x(t)t

dx

于是x(t)满足如下微分方程:dtrx

x(0)x0解为:x(t)x0ert 模型二:Logistic模型

人口净增长率应当与人口数量有关,即: r=r(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值