辽宁工程技术大学
数 学 建 模 课 程 成 绩 评 定 表
赵常新 魏文楷 潘洋 一阶常微分方程模型—人口模型与预测
数学建模
一阶常微分方程模型—人口模型与预测
一.摘要:
二.模型的背景问题描述
三.模型假设
四.分析与建立模型
下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(t0),
N0101654万人,Nm200000万人。
要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2)建立中国人口的Logistic模型,并用该模型进行预测,与实际人口数据进行比较。
(3)利用MATLAB图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
赵常新 魏文楷 潘洋 一阶常微分方程模型—人口模型与预测
(4)利用MATLAB图形,画出两种预测模型的误差比较图,并分别标出其误差。
模型一:指数增长模型(马尔萨斯(Malthus)模型)
假设:人口净增长率r是一常数
符号:x(t)t时刻时的人口,可微函数x0t0时的人口 则r
x(tt)x(t)
x(t)t
dx
于是x(t)满足如下微分方程:dtrx
x(0)x0解为:x(t)x0ert 模型二:Logistic模型
人口净增长率应当与人口数量有关,即: r=r(