大家好,我是艾米雷斯。
在第三讲的末尾,艾米给自己挖了一个坑。艾米说,UMAT子程序中我们定义的 DDSDDE 这个矩阵主要影响的是求解的速度,而真正重要的是我们定义的 STRESS 数组,也就是,我们怎么通过积分获得准确的 STRESS 数组,以获得结构受力问题的最终解答。
那么问题来了,怎么样向大家展示这么一个迭代求解的过程,帮助大家理解艾米提出的这个观点呢?
艾米经过一些时间的思考,决定用下面的方法给大家做一个形象生动的展示。
读到这里,有的小伙伴会猜,艾米会利用 UMAT 进行酷炫地演示?
这是不可能的,首先, UMAT 就是一段程序,一般很难酷炫地演示。
而对于原理性东西的理解,我们可以采用更直观的方式。譬如,艾米下面将用函数的方式给大家展示一个完整的迭代求解过程,我们开始吧。
首先,我们先假定一个“实际的平衡路径”,用 x 表示位移,f(x) 表示该位移对应的荷载。
这里艾米假定,这个平衡路径的函数关系为:
为啥用这个函数呢,因为这个函数函数关系式和我们平时做试验时得到的荷载位移曲线很像哦,你画个图看看就知道了。
这里,小伙伴们不要被“平衡路径”这个名词吓着,其实就是“荷载位移曲线”,大家想想,你们做土木工程试件试验的时候,所有的力和位移不都是系统平衡时测得的?这种曲线其实就是所谓的“平衡路径”,只是我们一般会说得比较专业一点。
这里,我们定义第 m 步结束时,x = 0.5,并且已经获得了 f(0.5)=0.7071,而第 m+1 步就是要求解 f(x) = 1.2649 时