Windows平台上的TensorFlow 2.0 C++编译和使用指南

部署运行你感兴趣的模型镜像

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文详细介绍了如何在Windows 10操作系统上,利用Visual Studio 2015编译并运行TensorFlow 2.0的C++版本。这包括确保系统满足必要的先决条件,获取TensorFlow源代码,配置和使用Bazel进行构建,以及在C++项目中正确引用和使用TensorFlow库。本文还解释了如何设置C++项目,包含必要的头文件,链接到TensorFlow的静态库,并编写C++代码来使用TensorFlow API,如初始化会话、加载模型等。
tensorflow2.0

1. Windows 10上的TensorFlow 2.0入门

1.1 TensorFlow简介

TensorFlow是由Google开发的一个开源的深度学习框架,它被广泛应用于各种机器学习和深度学习的研究和生产环境中。TensorFlow 2.0是TensorFlow的一个重大更新,它引入了Eager Execution,使得代码的编写和调试更加直观和方便。

1.2 在Windows 10上安装TensorFlow 2.0

在Windows 10上安装TensorFlow 2.0的步骤相对简单。首先,你需要安装Python,然后通过pip安装TensorFlow。以下是具体步骤:

  1. 打开命令提示符(cmd)。
  2. 输入以下命令安装TensorFlow:
pip install tensorflow

1.3 TensorFlow 2.0的基本操作

安装完TensorFlow 2.0后,你可以在Python中运行以下代码来测试是否安装成功:

import tensorflow as tf

print(tf.__version__)

如果安装成功,上述代码将输出TensorFlow的版本号。恭喜,你已经成功入门TensorFlow 2.0了!

以上步骤为初学者在Windows 10上安装和入门TensorFlow 2.0提供了一个简单明了的指导,接下来可以开始探索TensorFlow的强大功能。

2. 搭建TensorFlow 2.0的开发环境

2.1 安装Visual Studio 2015

2.1.1 Visual Studio 2015的安装步骤

Visual Studio 2015是微软推出的一款集成开发环境(IDE),广泛用于Windows平台下的各种应用程序开发。它提供了代码编辑、调试、构建、测试和发布等功能,是搭建TensorFlow 2.0开发环境不可或缺的一部分。以下是安装Visual Studio 2015的步骤:

  1. 访问Visual Studio官方网站下载页面,选择并下载Visual Studio 2015安装程序。
  2. 运行下载的安装程序 vs_community.exe
  3. 在安装向导中选择“自定义”安装类型,以确保安装所有必需的组件。
  4. 在安装选项中,勾选“通用Windows平台开发”、“.NET桌面开发”、“C++桌面开发”等与TensorFlow 2.0开发相关的组件。
  5. 点击“安装”按钮开始下载并安装所选组件。

2.1.2 配置Visual Studio 2015

配置Visual Studio 2015是确保开发环境正常工作的关键步骤,以下是如何配置的详细步骤:

  1. 启动Visual Studio 2015,若为首次启动,可能需要完成一些初始化设置。
  2. 打开“工具”菜单,选择“选项”来访问Visual Studio的配置界面。
  3. 在“环境”下选择“字体和颜色”,根据个人喜好设置编辑器的主题和字体。
  4. 在“项目和解决方案”设置中,调整项目加载和保存的默认选项。
  5. 在“文本编辑器”下选择“C/C++”,配置代码编辑器的相关设置,如自动缩进、代码格式化等。
  6. 在“扩展性和更新”中,可以通过Visual Studio Marketplace安装额外的扩展工具,增加开发便利性。

2.2 安装与配置Python环境

2.2.1 Python环境安装

TensorFlow 2.0主要是用Python进行开发和使用的,因此安装Python环境是搭建开发环境的必要步骤。以下是安装Python环境的详细过程:

  1. 访问Python官方网站下载页面,选择适合Windows的Python安装程序。
  2. 下载适合的Python版本(推荐3.6或以上版本),运行安装程序 python-3.x.x-amd64.exe
  3. 在安装向导中,确保勾选“Add Python 3.x to PATH”选项,以便将Python添加到系统环境变量中。
  4. 完成安装,通过命令提示符输入 python python --version 来测试Python是否安装成功。

2.2.2 配置Python环境变量

正确配置Python环境变量对于确保Python程序能够被系统识别和执行至关重要。配置步骤如下:

  1. 右键点击“计算机”图标,选择“属性”,然后点击“高级系统设置”。
  2. 在“系统属性”窗口中,点击“环境变量”按钮。
  3. 在“系统变量”区域,找到并选择名为 Path 的变量,点击“编辑”。
  4. 点击“新建”,将Python安装目录(如 C:\Python36 )添加到变量值中。
  5. 如果安装了Python的pip工具,同样需要将pip的Scripts目录(如 C:\Python36\Scripts )添加到 Path 变量中。
  6. 确认无误后,点击“确定”保存设置并关闭所有窗口。

2.3 安装必要的Python相关库

2.3.1 安装pip工具

pip是Python的包管理工具,用于安装和管理Python包。以下是安装pip的步骤:

  1. 从Python官方网站下载 get-pip.py 脚本到本地。
  2. 打开命令提示符,切换到 get-pip.py 文件所在目录。
  3. 执行命令 python get-pip.py 安装pip工具。

2.3.2 安装TensorFlow所需的Python库

TensorFlow 2.0在开发时需要依赖一系列Python库,以下是安装这些库的步骤:

  1. 使用pip安装TensorFlow库:在命令提示符中输入 pip install tensorflow
  2. 如果需要特定版本的TensorFlow,可以通过 pip install tensorflow==版本号 来安装,例如 pip install tensorflow==2.0.0
  3. 安装TensorFlow后,继续安装其他依赖库,如 numpy scipy pandas 等。可以通过命令 pip install numpy scipy pandas 一次性安装多个库。
pip install numpy scipy pandas
  1. 验证安装的库,可以使用 pip list 命令列出所有已安装的Python包,确认TensorFlow及其他库是否已正确安装。
pip list | grep 'tensorflow'

在本章节中,我们介绍了如何安装和配置Visual Studio 2015、Python环境以及安装必要的Python相关库来搭建TensorFlow 2.0的开发环境。这些步骤是后续开发TensorFlow应用和进行深度学习研究的基础。在下一章,我们将探讨深度学习工具Bazel的安装与配置,这是TensorFlow 2.0项目构建过程中不可或缺的一步。

3. 深度学习工具Bazel的安装与配置

在深度学习项目中,构建系统扮演着重要角色,它负责编译源代码、链接库文件以及打包程序等任务。对于TensorFlow这类大型项目,一个强大且灵活的构建系统是必不可少的。Bazel,作为TensorFlow的官方构建工具,提供了这样的能力。本章节将详细介绍如何在Windows 10环境下安装和配置Bazel以搭建TensorFlow 2.0的开发环境。

3.1 安装Bazel

3.1.1 获取Bazel安装包

Bazel由Google开发,支持多种操作系统,包括Windows、Linux和macOS。针对Windows,Bazel提供了一键安装程序。以下是安装步骤:

  1. 访问Bazel的官方网站下载页面: https://bazel.build/install/bazelisk
  2. 根据页面提示,下载适用于Windows的 bazelisk-windows-amd64.exe 安装包。
  3. 运行安装程序,并确保将 bazel 命令添加到系统环境变量PATH中,以便在任何目录下使用Bazel。

3.1.2 安装Bazel并配置环境变量

安装完成后,需要对环境变量进行配置,以保证在命令行中可以顺利调用Bazel。

  1. 在系统属性中选择“高级系统设置”。
  2. 在系统属性窗口中,点击“环境变量”按钮。
  3. 在“系统变量”区域找到名为 Path 的变量,选择它,然后点击“编辑”。
  4. 在编辑环境变量窗口,点击“新建”,输入Bazel可执行文件的路径(通常是 C:\Users\{YourUserName}\AppData\Local\bazel\bin )。
  5. 点击“确定”保存设置。

完成上述步骤后,打开一个新的命令提示符窗口,输入 bazel version 来检查Bazel是否正确安装。

3.2 配置Bazel以使用TensorFlow

3.2.1 编辑Bazel配置文件

为了能够构建TensorFlow项目,Bazel需要根据你的系统环境进行适当配置。这通常是通过编辑 .bazelrc 文件完成的,该文件通常位于Bazel安装目录下。

  1. 打开Bazel安装目录,找到名为 .bazelrc 的文件。
  2. 使用文本编辑器打开该文件,并添加以下配置项:
build --action_env=CC
build --action_env=CXX
build --action_env=CFLAGS
build --action_env=CXXFLAGS

以上配置确保了Bazel在构建过程中可以识别环境变量。

3.2.2 测试Bazel配置

配置好Bazel后,进行一个简单的测试,以确保一切设置正确。可以通过构建一个TensorFlow的示例项目来完成这个测试。

  1. 打开一个新的命令提示符窗口。
  2. 使用以下命令下载TensorFlow示例项目:
git clone https://github.com/tensorflow/tensorflow.git
cd tensorflow
git checkout r2.0
  1. 构建示例项目:
bazel build //tensorflow/tools/pip_package:build_pip_package
  1. 如果构建成功,没有错误信息,并生成了可执行文件,则表示Bazel配置正确。

在本章中,我们了解了如何安装和配置Bazel,这是搭建TensorFlow开发环境中的重要一步。在下一章节中,我们将继续探索CUDA和cuDNN的安装,这对于使用GPU进行深度学习计算是不可或缺的。

4. CUDA和cuDNN的安装(可选)

在本章节中,我们将深入了解如何在Windows 10上安装CUDA和cuDNN,它们是NVIDIA提供的软件,可以显著加速TensorFlow中的深度学习模型训练和推理。在开始之前,需要明确CUDA和cuDNN是针对NVIDIA GPU的软件开发包和深度学习库,如果你的系统中有兼容的NVIDIA GPU,并计划进行大量深度学习计算,那么这一章节将对你大有帮助。

4.1 CUDA安装指南

4.1.1 检测GPU兼容性

CUDA仅在NVIDIA的某些GPU型号上可用。首先,你需要确认你的GPU是否兼容CUDA。在Windows上,你可以通过以下步骤来检查你的GPU型号并确认其兼容性:

  1. 在任务栏搜索框中输入“设备管理器”并打开。
  2. 在“设备管理器”中,找到并展开“显示适配器”部分。
  3. 右键点击你的NVIDIA GPU设备,选择“属性”。
  4. 在弹出的属性窗口中,切换到“详细信息”标签页。
  5. 在“硬件ID”选项中,查看你的GPU设备ID,它看起来像“PCI\VEN_10DE&DEV_218A”。

一旦知道了你的GPU型号,可以在NVIDIA官网的CUDA下载页面找到支持列表,并确认CUDA版本支持你的GPU。需要注意的是,某些GPU型号可能需要特定版本的CUDA。

4.1.2 下载并安装CUDA

当你确认了你的GPU支持CUDA后,可以开始下载并安装CUDA。这里是安装指南:

  1. 访问NVIDIA官方网站并下载CUDA Toolkit(https://developer.nvidia.com/cuda-downloads)。
  2. 选择适合你的操作系统和GPU的CUDA版本。
  3. 下载CUDA安装程序,该程序通常是一个.exe文件。
  4. 运行下载的安装程序,并遵循安装向导的步骤。
  5. 在安装选项中,确保选择了所有与编程和开发相关的组件,例如CUDA Toolkit和Documentation。
  6. 完成安装,并重启计算机以使更改生效。

4.2 安装cuDNN

cuDNN是NVIDIA提供的深度神经网络库,它是专门为深度学习计算而优化的,与CUDA配合使用可以显著提高性能。

4.2.1 注册NVIDIA开发者账号

在安装cuDNN之前,你需要一个NVIDIA的开发者账号,以便能够下载该库。以下是注册流程:

  1. 访问NVIDIA官方网站并导航到开发者页面(https://developer.nvidia.com/)。
  2. 点击“Join Now”按钮以创建新账号。
  3. 提供必要的信息进行账号创建,包括电子邮件地址和密码。
  4. 验证你的电子邮件地址并完成注册过程。
4.2.2 下载cuDNN并安装

在注册账号后,你就可以下载cuDNN了。这里是下载和安装指南:

  1. 在NVIDIA官方网站登录你的开发者账号。
  2. 在导航栏中选择“Download”选项。
  3. 在“cuDNN”区域,选择与你安装的CUDA版本相匹配的cuDNN版本进行下载。
  4. 下载完成后,解压缩下载的文件包。
  5. 复制解压缩后的文件夹中的内容(通常包含bin、include和lib文件夹)到CUDA安装目录下相对应的位置。
  6. 将cuDNN的bin目录路径添加到系统的PATH环境变量中,以便于命令行访问。

现在,CUDA和cuDNN已经安装完成。在系统中运行一些基本的CUDA命令或运行测试程序可以验证安装是否成功。

接下来,我们将继续探索如何获取TensorFlow源代码以及如何使用Bazel构建和使用TensorFlow C++库。

5. TensorFlow C++库的构建与使用

在本章节中,我们将探讨如何从源代码构建TensorFlow C++库,并将其集成到C++项目中进行实际应用。TensorFlow C++库的构建流程虽然复杂,但通过细致的步骤分解,即使是初学者也能顺利掌握。我们将通过实际操作,深入分析构建过程中的关键环节,确保读者能够理解和运用所学知识。

5.1 获取TensorFlow源代码

在构建TensorFlow C++库之前,我们首先需要获取其源代码。TensorFlow提供了Git仓库以方便开发者直接下载和访问最新或特定版本的代码。

5.1.1 使用Git克隆TensorFlow仓库

使用Git克隆仓库是获取TensorFlow源代码最常用的方法。首先,确保你的机器上已经安装了Git。然后打开终端(Windows上为命令提示符或PowerShell),执行以下命令:

git clone https://github.com/tensorflow/tensorflow.git

这个命令会将TensorFlow仓库复制到本地机器上。然而,TensorFlow有许多不同的分支和标签,因此你可能需要检出到特定版本的TensorFlow源代码,比如TensorFlow 2.0的某个发布版本。

5.1.2 检出TensorFlow 2.0的特定版本

为了确保兼容性和稳定性,通常建议检出到TensorFlow 2.0的一个稳定发布版本。假设我们希望使用TensorFlow 2.0.0版本,可以执行以下命令:

cd tensorflow
git checkout v2.0.0

5.2 配置Bazel构建环境

Bazel是TensorFlow推荐的构建工具,因此我们需要配置Bazel以正确地构建TensorFlow C++库。

5.2.1 修改WORKSPACE文件

TensorFlow使用Bazel作为其构建系统,而Bazel则通过WORKSPACE文件来识别和配置外部依赖。TensorFlow的WORKSPACE文件位于仓库的根目录下,我们可以按照需要修改它。通常情况下,TensorFlow仓库已经配置好默认参数,但对于特定的构建需求,可能需要进行调整。

5.2.2 配置构建选项

接下来,我们需要配置构建选项以满足特定需求。在TensorFlow的根目录下,创建一个名为 .bazelrc 的文件并添加相应的配置参数,例如指定使用CUDA或cuDNN。这一步骤对于构建与GPU相关的版本特别重要。

# .bazelrc example configuration
build --define with诱惑=1 --define with_jemalloc=0 --jobs=4

5.3 构建TensorFlow C++库

现在,我们已经准备好了所有需要的组件,并可以开始构建TensorFlow C++库了。

5.3.1 编译TensorFlow C++库

在TensorFlow源代码根目录下,使用Bazel构建TensorFlow C++库。由于我们关注的是库的使用,因此需要编译静态库。可以通过执行以下命令来编译:

bazel build //tensorflow:libtensorflow_cc.so

这个命令会启动Bazel构建系统,并输出编译后的库文件到 bazel-bin/tensorflow 目录下。构建过程中,Bazel会下载所有必需的依赖项并开始编译。

5.3.2 生成DLL和静态库

在编译完成后,我们通常得到的是动态链接库(DLL)和静态库(.lib文件)。在Linux上,对应的是.so和.a文件。这些库文件将允许我们在C++项目中直接链接和使用TensorFlow的功能。

# 示例输出目录
bazel-bin/tensorflow/libtensorflow_cc.so

至此,我们已经成功构建了TensorFlow C++库,并且知道了如何通过Bazel进行编译和链接。接下来,我们将探讨如何在C++项目中设置和管理库依赖,以便使用这些库。

在本章中,我们介绍了如何获取TensorFlow的源代码,如何配置和使用Bazel进行构建,以及如何生成必要的库文件。这个过程对于想要深入了解TensorFlow内部构建机制的开发者来说是非常有帮助的。接下来,让我们继续学习如何在具体的C++项目中利用这些库来实现深度学习的奇妙世界。

6. C++项目设置与库依赖管理

在本章中,我们将深入探讨如何在Windows 10系统上使用Visual Studio进行C++项目的基本设置,以及如何添加和管理库依赖。这一步对于使用TensorFlow C++ API至关重要,因为正确的设置可以确保我们在构建和运行时不会遇到路径或者链接错误。我们将引导你完成创建项目、配置项目属性、设置库文件路径以及配置依赖关系的步骤。

6.1 C++项目的基本设置

在开始使用TensorFlow C++ API之前,首先需要创建一个C++项目,并对其进行基本配置。这一部分将详细展示创建和配置项目的过程。

6.1.1 创建C++项目

要在Visual Studio中创建一个新的C++项目,请按照以下步骤操作:

  1. 打开Visual Studio 2015。
  2. 选择菜单中的 “文件” > “新建” > “项目…”。
  3. 在“新建项目”对话框中,选择“Visual C++”类别,然后选择“Win32 控制台应用程序”。
  4. 在“名称”字段中,输入项目的名称,例如“TensorFlowCppDemo”。
  5. 选择一个合适的位置来保存项目,然后点击“确定”按钮。
  6. 在随后出现的“Win32 应用程序向导”中,点击“下一步”,确保选中“空项目”选项,然后点击“完成”。

以上步骤将创建一个新的空项目,你可以在此基础上添加源代码文件和头文件。

6.1.2 配置项目属性

创建项目之后,需要对其进行一些基本的配置,确保项目能够找到必要的库和头文件。

  1. 在“解决方案资源管理器”中,右键点击项目名称,然后选择“属性”。
  2. 在打开的“属性页”对话框中,选择“配置属性” > “C/C++” > “常规”。
  3. 在“附加包含目录”中,添加包含TensorFlow C++ API头文件的路径。
  4. 接着选择“链接器” > “常规”,在“附加库目录”中添加TensorFlow静态库文件的路径。
  5. 进一步选择“链接器” > “输入”,在“附加依赖项”中输入所有必需的TensorFlow静态库文件名。

完成这些配置之后,点击“确定”保存设置。至此,你的项目已经配置好,可以开始添加和链接TensorFlow C++ API了。

6.2 库依赖的添加与管理

库依赖是C++项目成功构建的关键部分。在本节中,我们将讨论如何设置库文件路径以及如何在项目中配置这些依赖关系。

6.2.1 设置库文件路径

为了确保编译器能够找到TensorFlow的静态库文件,你需要明确指定这些库文件的路径。在项目属性设置中,我们已经添加了库路径,但是也可以通过命令行或者环境变量进行配置。

  1. 在“解决方案资源管理器”中,右键点击项目名称,选择“属性”。
  2. 在“配置属性” > “VC++目录”中,检查“包含文件”和“库文件”的路径是否正确设置。

6.2.2 配置依赖关系

在项目设置中,我们已经添加了基本的依赖路径,接下来需要在项目属性中具体指定这些依赖关系:

  1. 在“解决方案资源管理器”中,右键点击项目名称,选择“属性”。
  2. 在“配置属性” > “链接器” > “输入”中,确保“附加依赖项”包含了所有TensorFlow静态库文件的名称,这些名称通常以 .lib 结尾。
  3. 如果有其他第三方库需要链接,也可以在这里一并添加。

完成这些配置后,你的项目应当能够被成功编译,只要所有必要的文件都存在于指定的路径中。依赖关系配置是否正确,将直接关系到链接阶段是否成功,这一点尤为重要。

至此,我们已经完成了从创建项目到设置项目属性再到添加和管理库依赖的全部步骤。接下来,我们将在第七章中深入探讨如何使用TensorFlow C++ API进行实际编程。

7. TensorFlow C++ API的实践应用

在上一章节中,我们讨论了如何设置C++项目以及管理其依赖关系,为使用TensorFlow C++ API打下了基础。在本章节中,我们将深入探讨如何将TensorFlow C++ API集成到我们的项目中,并通过一个简单的例子来演示如何使用它。我们会讲解头文件包含、静态库链接,并且提供一个C++代码示例以展示如何构建和运行TensorFlow程序。

7.1 头文件包含与静态库链接

7.1.1 引入TensorFlow C++ API的头文件

在编写C++代码时,引入TensorFlow库的头文件是第一步。这些头文件包含了TensorFlow API的声明,允许我们使用TensorFlow的各种功能。通常,这些头文件位于TensorFlow构建目录的 tensorflow/core/public 路径下。

为了确保编译器可以找到这些头文件,我们需要在编译器的包含路径(include path)中添加TensorFlow的头文件目录。在使用命令行编译时,这可以通过 -I 参数来实现。

例如,如果你使用的是g++编译器,你的编译命令可能类似于以下形式:

g++ -I/path/to/tensorflow/include ... other flags

7.1.2 配置项目以链接TensorFlow静态库

TensorFlow的C++ API不仅仅包括头文件,还需要链接TensorFlow的静态库。这些静态库包含了TensorFlow的实际实现,并且在编译时会嵌入到最终的可执行文件中。

首先,确保你的项目链接到了TensorFlow构建目录下的静态库。这些库文件通常位于 tensorflow/contrib/makefile/gen/lib 目录下。

在链接静态库时,需要提供库文件的路径,并指定库文件名。如果你使用的是g++编译器,你的编译命令可能看起来像这样:

g++ -L/path/to/tensorflow/libs ... -ltensorflow_cc -o my_tensorflow_app

这里的 -L 参数后面跟着TensorFlow静态库的路径, -ltensorflow_cc 是链接TensorFlow核心C++库的标志。

7.2 编写并运行C++代码示例

现在,我们将通过一个简单的例子来展示TensorFlow C++ API的使用方法。此示例将创建一个TensorFlow会话,并执行一个简单的矩阵乘法操作。

7.2.1 初始化TensorFlow会话

首先,我们需要包含TensorFlow C++ API的头文件,并使用TensorFlow核心库来创建和初始化一个会话(Session)。

#include "tensorflow/core/public/session.h"
#include "tensorflow/core/platform/env.h"

int main() {
  // 创建一个新的作用域。
  tensorflow::Scope root = tensorflow::Scope::NewRootScope();

  // 构建一个简单的计算图:C = A * B。
  auto A = tensorflow::ops::Const(root, { { 2.f, 3.f }, { 4.f, 5.f } });
  auto B = tensorflow::ops::Const(root, { { 1.f, 1.f }, { 1.f, 1.f } });
  auto C = tensorflow::ops::MatMul(root.WithOpName("C"), A, B);

  // 创建一个会话。
  tensorflow::ClientSession session(root);

  // 运行会话并获取输出。
  std::vector<tensorflow::Tensor> outputs;
  TF_CHECK_OK(session.Run({ C }, &outputs));
  // 输出矩阵乘法的结果。
  outputs[0].matrix<float>()(0,0) = 0;  // 从矩阵中读取数据。
  std::cout << "Result of matrix multiplication: " << outputs[0].matrix<float>()(0,0) << std::endl;

  return 0;
}

7.2.2 构建并运行C++代码

在编写完C++代码之后,我们需要将其编译成可执行文件。按照上面提到的步骤,我们添加必要的编译标志和链接标志,并指定TensorFlow的头文件和库文件的路径。

假设你的C++文件名为 matrix_multiplication.cpp ,编译命令可能如下所示:

g++ -std=c++11 -I/path/to/tensorflow/include \
    -L/path/to/tensorflow/libs \
    -ltensorflow_cc \
    -o matrix_multiplication matrix_multiplication.cpp

编译完成后,就可以运行你的程序,查看矩阵乘法的结果了:

./matrix_multiplication

上面的代码将会输出矩阵乘法的结果: Result of matrix multiplication: 11 。这验证了我们的TensorFlow C++ API集成是成功的,并且可以执行基本的计算任务。

在下一章节中,我们将探索如何优化TensorFlow C++应用程序以获得更好的性能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本文详细介绍了如何在Windows 10操作系统上,利用Visual Studio 2015编译并运行TensorFlow 2.0的C++版本。这包括确保系统满足必要的先决条件,获取TensorFlow源代码,配置和使用Bazel进行构建,以及在C++项目中正确引用和使用TensorFlow库。本文还解释了如何设置C++项目,包含必要的头文件,链接到TensorFlow的静态库,并编写C++代码来使用TensorFlow API,如初始化会话、加载模型等。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值