使用dockerfile构建docker镜像--以配置SNIPER算法运行环境为例

由于极少的运行资源,使用docker部署环境与依赖库,已经成为了一种新的技术风向。本文结合SNIPER算法库,介绍如何构建一个docker镜像,并在里面运行该算法。

2019-03-26 21:43:59

阅读数 66

评论数 1

在UBUNTU 16.04下安装CUDA10.1+CUDNN7.5(简略版)

安装CUDA 按照https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html流程走 问题1: [INFO]: ERROR: You appear to be running an X server; please ex...

2019-03-12 21:14:43

阅读数 2485

评论数 1

Windows 10 + Visual Studio 2017 + CUDA 10 环境下编译 pytorch 1.0

pytorch 1.0 一个月之前发布了。pytorch其实笔者很早就接触过,那时候惊叹于它的简洁、动态及良好的社区支持。但是那时候,pytorch在c++上的支持并不好,工业界很难用,基本上只属于一种比较好的算法验证框架。 但是,pytorch 1.0 的发布终结了这一现况,现在,它有了良好的...

2019-01-02 23:26:59

阅读数 885

评论数 4

[tensorflow应用之路]目标检测中mAP的概念及使用

本文详细讲述了何为mAP,为何用它来定义目标检测算法的精度,以及mAP的计算方法

2019-01-02 22:31:17

阅读数 503

评论数 0

[tensorflow 应用之路]Batch Normalization 原理详解及应用方法

BN是2015年由Sergey Ioffe提出的方法,旨在消除前一层的不当参数对本层训练的影响。优于各个层的卷积核参数不同,根据反向传播法则我们知道,||W||||W||||W||及结果||h||||h||||h||越大对梯度的影响也就越大,这会导致各层的参数更新差异比较大,使得学习率变得很难选定...

2018-10-11 19:49:53

阅读数 500

评论数 0

[更新]windows 环境下编译tensorflow 1.9及下载 ( CUDA 9.1 + CUDNN 7.0)

https://github.com/tensorflow/tensorflow/issues/19898

2018-09-17 18:13:27

阅读数 354

评论数 1

在git中如何丢弃不需要修改的文件

在pycharm或visual studio等IDE中,有很多自动生成的文件如.pyc,.db, .obj文件,有时候gitignore文件漏掉了这些文件,导致它们被误添加到版本控制中,如何忽略这些文件呢? 使用下面这段话: git stash save --keep-index 将stas...

2018-07-31 19:24:26

阅读数 353

评论数 0

[tensorflow应用之路]10行代码实现一个完整的SVM分类器

SVM是一种常用的机器学习分类器模型,其原理为最大化类间隔(被称为支持向量),来达到分类的目的。它是一种有监督的模型。 SVM原理简述 SVM通过预测值y′=wx+by′=wx+by'=wx+b与真实值yyy之间的差值实现最大间隔分类。即 wx+b⩾1,y=1wx+b⩽−1,y=−1wx...

2018-06-28 14:37:22

阅读数 4227

评论数 1

import matplotlib.pyplot/import QtCore, QtGui 报错:DLL load failed 解决办法

import anaconda的库报错:DLL load failed ,解决办法。 cmd依次输入下面命令,查找DLL依赖: where freetype.dll where zlib.dll 如果出现2个以上地址,且第一个地址不是anaconda目录下,则问题是DLL冲突...

2018-06-20 14:59:48

阅读数 2288

评论数 1

[tensorflow应用之路]RNN预测时间序列原理及LSTM/GRU算法实现

RNN是对时间序列数据的一种预测算法,被大量用于金融市场估计、视频序列处理、行为预测等课题中。说起来复杂,实际上和普通的一维神经网络没什么区别,还是权重偏执那一套。那么怎么将上个时间中的知识传下去呢?RNN中有个状态变量(cell state),上一时间的状态变量和输入数据一起,共同组成本次时间的...

2018-06-05 19:46:39

阅读数 3560

评论数 1

[tensorflow应用之路]卷积层conv2d中的padding参数辨析

卷积层是所有深度卷积网络的基础。有同学发现,卷积后的图像稍稍偏移,卷积结果就会发生巨大的变化,这是由于padding参数造成的,今天我们就来讲讲这个现象和对应的解决方法。 卷积层的各个参数的官方解释是这样的: Arguments: inputs: Tensor input. f...

2018-05-24 20:00:20

阅读数 1295

评论数 0

[tensorflow应用之路]如何用少量标注训练样本?将GAN用于半监督(上)

我们用tensorflow应用于实际项目中时,常常会遇到一种情况:我们有很多的数据,但是只有很少的标注。因为标注需要很多时间。这时我们可能会想到用半监督(semi-supervise)的方法训练数据。但是半监督需要将无标签(unlabeled)的数据用于训练中,这是一个很困难的事情。恰好,最近有一...

2018-03-15 19:22:02

阅读数 1297

评论数 1

[tensorflow应用之路]什么是深度神经网络——通过实现简单的神经网络理解DNN

在之前的文章中,我们学习了如何使用tensorflow保存和载入一个深度神经网络,如果是抄别人的网络然后用一下,这些知识肯定足够了。但对于学习tensorflow的大多数算法工程师们来说,不自己实现一个深度网络肯定是浑身难受。本章将介绍深度神经网络中最基本的四个概念: - 前向预测(...

2018-02-08 11:04:10

阅读数 1229

评论数 0

[tensorflow应用之路]模型的存储、读取和预测(c++/python)

之前的文章中讲了如何使用tensorflow源码编译一个c++版的动态库。同时留下了一个问题:能否在C++中读取预先训练好的模型呢?———答案是肯定的。 下面,就来一一介绍tensorflow模型在python中的存储和读取,在c++中的读取方式。为什么不讲如何用C++去存储一个模型呢?因为不建...

2018-01-08 18:55:10

阅读数 6999

评论数 5

如何在windows环境中使用vs2015编译tensorflow v1.5

如何在windows环境中使用vs2015编译tensorflow v1.5 tensorflow即将发布1.5版本,作为工业界应用最广的深度学习框架,它以其强大的泛用性和丰富的社区环境而广受好评。tensorflow1.5新性能。 但是tfboys/tfgirls在深入使用后都会遇到不同的问...

2018-01-06 14:15:06

阅读数 8327

评论数 31

提示
确定要删除当前文章?
取消 删除
关闭
关闭