查询两点间隔距离

1.创建测试表

 
  1. CREATE TABLE `location` (

  2. `id` int(10) unsigned NOT NULL AUTO_INCREMENT,

  3. `name` varchar(50) NOT NULL,

  4. `longitude` decimal(13,10) NOT NULL,

  5. `latitude` decimal(13,10) NOT NULL,

  6. PRIMARY KEY (`id`),

  7. KEY `long_lat_index` (`longitude`,`latitude`)

  8. ) ENGINE=InnoDB DEFAULT CHARSET=utf8;

2.插入测试数据

 
  1. insert into location(name,longitude,latitude) values

  2. ('广州东站',113.332264,23.156206),

  3. ('林和西',113.330611,23.147234),

  4. ('天平架',113.328095,23.165376);

  5.  
  6. mysql> select * from `location`;

  7. +----+--------------+----------------+---------------+

  8. | id | name | longitude | latitude |

  9. +----+--------------+----------------+---------------+

  10. | 1 | 广州东站 | 113.3322640000 | 23.1562060000 |

  11. | 2 | 林和西 | 113.3306110000 | 23.1472340000 |

  12. | 3 | 天平架 | 113.3280950000 | 23.1653760000 |

  13. +----+--------------+----------------+---------------+

3.搜寻1公里内的数据

搜寻点坐标:时代广场 113.323568, 23.146436

6370.996公里为地球的半径

计算球面两点坐标距离公式

 
  1. C = sin(MLatA)sin(MLatB)cos(MLonA-MLonB) + cos(MLatA)cos(MLatB)

  2. Distance = RArccos(C)*Pi180

根据计算公式得到查询语句如下:

 
  1. select * from `location` where (

  2. acos(

  3. sin(([#latitude#]*3.1415)/180) * sin((latitude*3.1415)/180) +

  4. cos(([#latitude#]*3.1415)/180) * cos((latitude*3.1415)/180) * cos(([#longitude#]*3.1415)/180 - (longitude*3.1415)/180)

  5. )*6370.996

  6. )<=1;

执行查询:

 
  1. mysql> select * from `location` where (

  2. -> acos(

  3. -> sin((23.146436*3.1415)/180) * sin((latitude*3.1415)/180) +

  4. -> cos((23.146436*3.1415)/180) * cos((latitude*3.1415)/180) * cos((113.323568*3.1415)/180 - (longitude*3.1415)/180)

  5. -> )*6370.996

  6. -> )<=1;

  7. +----+-----------+----------------+---------------+

  8. | id | name | longitude | latitude |

  9. +----+-----------+----------------+---------------+

  10. | 2 | 林和西 | 113.3306110000 | 23.1472340000 |

  11. +----+-----------+----------------+---------------+

### CloudCompare 中获取点云数据点间隔的方法 在CloudCompare中,获取点云数据的点间隔是一个重要的操作。一种方法是利用CloudCompare内置的功能以及一些额外的处理手段。 #### 使用CloudCompare自带工具估算平均距 CloudCompare提供了统计分析工具,可以用来估计点云的整体密度和平均距。具体来说,在加载了所需的点云文件(如.ply、.xyz等格式)之后[^1],可以选择`Tools -> Point cloud information (XYZ)`选项来查看基本统计数据,其中包括最小距离、最大距离和平均距离等参数,这些信息能够帮助理解点之的大致分布情况。 #### 计算点实际距离 另一种更为精确的方式是从程序逻辑角度出发,即手动编写脚本或借助Python API接口调用PCL库函数完成此任务。按照特定算法流程,先遍历所有点找到每一点与其最邻近点之的真实欧氏几何距离;接着把这些测得的数据汇总起来求均值作为最终结果输出。这种方法已在实践中得到验证,并且适用于多种场景下的需求评估[^2]。 ```cpp // C++ PCL代码片段用于计算点云的平均距离 #include <pcl/point_cloud.h> #include <pcl/kdtree/kdtree_flann.h> float computePointCloudAverageDistance(pcl::PointCloud<pcl::PointXYZ>::Ptr cloud){ pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; kdtree.setInputCloud(cloud); int n_points = cloud->size(); float total_distance = 0; for(int i=0; i<n_points; ++i){ std::vector<int> pointIdxNKNSearch(1); std::vector<float> pointNKNSquaredDistance(1); if(kdtree.nearestKSearch((*cloud)[i], 2, pointIdxNKNSearch, pointNKNSquaredDistance)>0) total_distance += sqrt(pointNKNSquaredDistance[1]); } return total_distance / n_points; } ``` 上述C++代码展示了如何基于KD树结构快速定位每个查询点周围的k个最近邻节点之一,并据此测两者的直线距离进而得出全局意义上的平均值。 #### 利用子采样技术简化运算 考虑到大规模点云集可能会带来较高的时复杂度开销,可考虑采用下采样的策略减少参与计算的核心样本数而不显著影响精度。这不仅加快了处理速度也降低了内存占用率。例如,在执行初步测试时就可以通过对原有点集做稀疏化预处理或是引入网格划分机制选取代表性位置来进行局部特征提取[^3]。 综上所述,无论是依赖软件内部提供的便捷途径还是自定义开发针对性解决方案都能有效地达成目标—准确测定所关心区域内任意两点的典型分离程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值