- 博客(133)
- 收藏
- 关注
原创 AI4SCIENSE(鄂维南院士:再谈AI for Science)
整个流程涉及了数据处理、特征提取、模型训练与验证等多个环节,最终目的是为了构建一个有效的机器学习模型来进行后续的分析或预测工作。:接着进行对接过程,产生一个“对接得分”(docking score)。:最后,经过上述步骤处理后,会形成一个“机器学习模型”。:首先有一个“超大型数据库”,其中包含了大量的数据。:在训练过程中,会对模型进行验证以确保其准确性。:通过聚类得到的结果用于表示为“符号配体”。:在整个过程中还会考虑模型的偏差问题。:利用得到的对接得分来训练一个模型。:对数据库中的数据进行聚类处理。
2024-11-10 16:50:23 191
原创 multKAN
假设我们希望引入一个辅助输入变量 a = a(x1, x2, . . . , xn),从而将函数转换为 y = f(x1, · · · , xn, a)。, xn) 计算出来的。:由于辅助变量是基于原始输入变量计算得到的,神经网络不需要在训练过程中学习如何生成这个变量,因此可以节省计算资源。:通过引入辅助变量,神经网络可以更容易地学习数据中的模式,因为它提供了一个新的维度或者视角来观察数据。通过使用这个方法,用户可以在不改变网络结构的情况下,增加网络的输入维度,从而可能提高模型的性能。
2024-11-04 20:54:42 291
原创 kan文件spline文件B样条
源码定义了一个名为B_batch的函数,它用于计算输入x在B样条基上的值。以下是代码的逐行解释:B_batchxgridkextenddevicex。
2024-11-03 00:15:09 948
原创 KAN文件kan层 阅读
这段代码定义了一个名为KANLayer的PyTorch模块类,它继承自nn.Module。以下是对类定义和属性的逐行解释:KANLayernn.ModuleKANLayerKANLayer初始化时的缩放比例样条函数spline(x)的幅度。grid_eps这个类的属性描述了KANLayer层的各种配置和状态,但类的方法(构造函数__init__和其他可能的方法)没有在给出的代码段中定义。这些属性将被用于配置和优化神经网络层的行为。
2024-11-02 23:48:31 762
原创 expand,None索引,permute【pytorch】
输入必须是一个向量或等价形式,扩展的最后一个维度与输入大小一致当输入形状为(1,1,1,1,1,……,3)_4时。expand的最后一位=输入向量的元素个数(长度)(3)expand的倒数第二位≥输入向量的shape的元素个数(几维) (4)推广:当输入形状为(3,1,4)时,expand可以为(3,n,4)当输入形状为(1,1,4)时,expand可以为(m,n,4)形状的最后一位必须相等,前面的位数,要么相等,要么是输入1,输出任意k。
2024-11-02 23:35:46 1271
原创 关于反向传播.backward()
张量中的值过大,可能会导致梯度爆炸,这会使得权重更新过大,从而使得训练过程不稳定。时,我们实际上是在告诉 PyTorch,我们想要计算每个输出元素对输入的梯度,假设每个输出元素对损失的贡献都是1。:在某些任务中,可能需要根据特定需求来调整梯度的权重,比如在强化学习中,某些动作的奖励可能需要比其他动作的奖励有更大的影响力。计算的损失就不再是对应于原始损失函数的标量损失,而是某种“加权”损失,这可能会使得损失的解释变得复杂。张量的元素不同,那么不同的输出元素对损失的贡献将不同。张量中的元素所缩放。
2024-11-01 19:03:30 864
原创 dim的方向 傻傻分不清
如果有shape【3,4,5】的tensor T3,dim=0求方差,则,可认为3是z的维数,4是y的维数,5是x的维数,想象成坐标轴,则把(x,y,z)的长方体压缩成了xoy平面的长方形T2,形状x5 y4,dim=0:第一个维度,视为行——按列处理数据,计算每一列的方差【0,0,0】,结果形状是shape去掉shape【0】,即【3,】T2【x】【y】=T【0】【x】【y】、T【1】【x】【y】、T【2】【x】【y】的方差。二维矩阵,每一个向量视为一行。这种情况输出【0,0,0】这种情况输出【1,1】
2024-11-01 15:38:50 218
原创 kan/mlp.py文件继续阅读【attribute定义plot定义fit在训练了reg正则化】
解释: 定义了一个名为attribute的方法,属于某个类的成员方法。解释: 检查self.acts是否为None,如果是,则调用方法来初始化或获取self.acts。解释: 初始化两个空列表和,用于存储节点分数和边分数。解释: 从网络的最后一层开始反向传播。创建一个与最后一层节点数相同的一维张量node_score,所有元素初始化为1,并设置为需要梯度(然后将这个张量移动到指定的设备(),并添加到列表中。|||解释: 开始一个循环,从网络的最后一层(self.depth。
2024-10-28 20:50:14 629
原创 kan代码阅读
定义了一个名为to的方法,它接受一个参数device。这个方法用于将模型的所有参数和缓冲区移动到指定的设备上,这个设备可以是CPU或者GPU。使用super()调用父类(这里是nn.Module)的to方法,并将当前实例self和device参数传递给它。这行代码的作用是将当前模型(MLP的实例)的所有参数和缓冲区移动到指定的device上。这行代码将device参数的值赋给实例变量。这样做是为了在后续的操作中可以引用这个设备,比如在模型的其他方法中使用这个设备来创建或操作张量。这行代码返回了。
2024-10-28 00:21:04 931
原创 softmax与mlp的简洁实现(sq)
这里使用的是nn自带的,有点像回调函数。给m初始化,if m 是线性层,std=0.01表示标准差为0.01.定义了一个名为的函数,它接受一个模块m作为参数。: 检查传入的模块是否是nn.Linear类型(即一个线性层)。: 如果模块是线性层,那么使用正态分布初始化该层的权重,标准差设置为0.01。这是一种常见的权重初始化方法,有助于在训练开始时防止梯度消失或爆炸。: 调用apply方法,它将函数应用于net中的所有模块。对于网络中的每个模块,
2024-10-27 16:29:51 666
原创 多层感知机的从零实现与softmax的从零实现(真·0000零基础)
"""计算预测正确的数量"""就是一个有着两个输入的函数(预测值,真实值)同样,对于任意数据迭代器data_iter可访问的数据集, 我们可以评估在任意模型net的精度。MXNETPYTORCHTENSORFLOWPADDLE"""计算在指定数据集上模型的精度"""net.eval() # 将模型设置为评估模式metric = Accumulator(2) # 正确预测数、预测总数data_iter是二元元祖(输入特征X,输出类别y)构成的可迭代列表,每个元祖是一个样本。
2024-10-27 00:33:44 1016
原创 KAN原作论文github阅读(readme)
5.为防止过拟合,先让模型欠拟合,在逐步增加数据量,增大规模时,先增加grid,在增加width。
2024-10-26 21:31:00 685
原创 Algorithmic aspects: We discuss the following:(1) Accuracy. Multiple choices in architecture design
be used.domain.
2024-10-25 19:17:45 853
原创 闭式表达式
有理函数:\( R(x) = \frac{P(x)}{Q(x)} \),其中\( P(x) \)和\( Q(x) \)是多项式。- 多项式:\( P(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \)- 未解决的积分:\( \int f(x) \, dx \),其中\( f(x) \)是一个没有已知原函数的函数。- 三角函数:\( \sin(x) \), \( \cos(x) \)简单来说,就是算好了的,确定了的,具体的表达式,不用进一步算的。
2024-10-24 20:36:40 326
原创 KAN论文
根据Kolmogorov-Arnold表示定理,任何多变量连续函数都可以表示为一系列单变量函数的组合。这意味着,尽管我们可能面对的是一个变量的复杂函数,但我们可以通过学习一系列函数及其组合来逼近这个复杂的函数。
2024-10-16 20:56:59 238
原创 论文中出现的名词定义
"维数灾难"(Curse of Dimensionality)是指在机器学习和数据分析中,随着数据维度的增加,分析和组织空间中的数据会。这些问题包括:1. **距离聚集(Distance Concentration)**:在高维空间中,数据点之间的距离趋向于聚集在一起,导致传统的距离度量(如欧几里得距离)变得不那么有效。这意味着,即使是最近邻算法也可能无法正确地识别出最近的数据点,因为所有点看起来都彼此接近。
2024-10-16 20:56:37 1000
原创 机器学习初步【1】
一个样本在m次采样中仍不会被踩到概率(1-1/m)^m→1/e。每次都随机抽1个在放回,重复m次,得到大小为m的数据集。将这1/e数据集作为测试集,剩下的作为训练集。
2024-10-08 21:04:46 100
原创 Word通配符
防止正文文本也被加粗,我们先找前面有会车的,选中,去掉回车,在以下内容查找。可以先找到特征文本,选中后在乡下替换,防止误杀。注意后面不能跟、不能跟enter。向下表示只在选定范围内查找替换。
2024-10-02 17:59:53 483
原创 文献阅读——电力系统安全域边界通用搜索模型与近似方法
DOI:10.13334/j.0258-8013.pcsee.190884 ©2020 Chin.Soc.for Elec.Eng. 4411 文章编号:0258-8013 (2020) 14-4411-19 中图分类号:TM 74 电力系统安全域边界通用搜索模型与近似方法 姜涛,李晓辉,李雪*,陈厚合,李国庆 (东北电力大学电气工程学院,吉林省 吉林市 132012)
2024-09-29 19:11:11 297
原创 遗忘的数学(拉格朗日乘子法、牛顿法)
min f, 则把gi符号调成负的。理论上这样迭代可以得到最优值(梯度为0)max f,则把gi符号调成正的。每次沿着切线方向下降,与x轴相交。有多个函数fi,多个变量xi。x=x_{k+1}即可。对d_k求导(即梯度下降)这样引入的参数都是正的了。dSi这一段没看懂……由来:taylor展开。
2024-09-25 22:45:12 524
原创 文献阅读——基于拉格朗日乘子的电力系统安全域边界通用搜索方法
为提升电力系统安全域(security region,SR)的构建效 率,提出一种基于拉格朗日乘子(Lagrange multiplier,LM) 的电力系统安全域边界(security region boundary,SRB)通用搜索方法。首先,根据电力系统静态安全性问题是由数量有 限的关键支路和节点主导的特点,将电力系统高维空间安全 域进行降维化简,进而构建降维后的电力系统安全域临界点 通用搜索优化模型;
2024-09-25 22:44:56 424
原创 需求导向的正则表达式
目录re.sub需求:把 1. 2.这些序号转成(1) (2)需求:反过来,把(1)->1. ,(2)=》2. 。需求:把出现的 1 2 3都转成下标进阶1!只想让化学符号(NH3)有此效果,不能让序号这种数字也转换 ——下标很长时,如C_60要怎么办编辑再加上正负号的替换=》上标,如铵根离子NH4+需求:上标替换10^2=>10² ——————————————————————————————————————import re*:(0,)+:(1,)re.sub(匹配的正则表达式,替换后的正则表达式,待
2024-09-15 21:24:24 755
原创 Python【2】问题
except语句用于捕获并处理程序中可能发生的异常。当程序执行过程中遇到异常时,控制会跳转到except块中,执行其中的代码。except块可以指定要处理的异常类型,也可以使用通配符except:来捕获所有类型的异常。
2024-09-05 17:57:52 1184
原创 Python【3】乌七八糟
print(f"[{msg}]执行时间为:", time.time() - t1)fun_one()fun_two()
2024-09-05 17:57:31 1170
原创 Python【1】
是编程领域的两种不同类型,它们的主要区别在于代码是如何被转换并执行。下面我将详细解释这两种类型的语言。### 编译型语言编译型语言是指那些能够被编译器转换成机器码的语言。当开发者编写完源代码之后,他们需要使用特定的编译器将其转换为机器语言(目标代码)。这个过程称为“编译”。一旦得到目标代码,就可以直接在处理器上运行,而不需要其他任何软件的支持。例如,C 语言就是一种典型的编译型语言。当你编写 C 语言代码后,你需要使用 GCC 或 Clang 等编译器将其编译成可执行的二进制文件。
2024-09-05 00:07:13 667
原创 Linux【4】拷贝移动 文件内容
指定文本必须在行首(^Text) 行尾(Text$)目标文件地址与原文件地址相同,且目标文件地址不存在——重命名。目标文件地址存在——连带原目录 一起移动到那个目录里。比如:A为ls ,让B为查询grep/分屏more。tree +目录 表示给定目录之下的结构。如果文件名不变,只需在后面制定目标路径。不要尝试tree / 根目录)()tree 表示当前目录下之后的结构。如:tree ~ 表示家目录的结构。把命令A的输出 作为命令B的输入。在rm 中,-r是删除目录。把c及以后的目录复制了。
2024-09-04 11:49:33 556
原创 SQL【1】基础语法
值的格式:外有括号,里面用逗号隔开,不一定是整整一行。列名='值' 表示要该项为该值。默认是升序的,当然扩充下词汇量。引号:文本,无需引号:数值。加了distinct后。
2024-09-01 23:47:41 568
原创 二叉树【2.5】代码专项
插入节点时有引用,而搜索时只有指针没有引用先中后序遍历亦然,因为只是遍历或者修改节点data,不用引用,新建节点、改变树的结构需要引用。
2024-08-25 00:17:46 1457
原创 二叉树【2】遍历
先序遍历:根左右中序遍历:左跟右后序遍历:左右跟例图先序性质中序性质后序性质先序+中序=确定二叉树后序+中序=确定二叉树先序+后序不能确定。
2024-08-24 19:46:57 157
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人