自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(207)
  • 收藏
  • 关注

原创 差分解方程

显式格式简单、直接,但时间步长受限,适用于非刚性问题。隐式格式复杂、稳定,适用于刚性问题,可以使用更大的时间步长。选择显式还是隐式格式取决于具体问题的性质、所需的稳定性和精度以及可接受的计算成本。

2025-02-15 23:36:02 335

原创 BDF(MD)

BDF7方法的关键在于它使用过去七个时间步的解来预测当前时间步的解。这种方法对于解决刚性方程特别有效,因为它能够保持稳定性。然而,由于其隐式性质,每一步都需要解一个非线性方程,这可能会使计算变得复杂。

2025-02-15 23:31:09 856

原创 又要pde。。

介绍了常微分方程的基本概念,包括一阶和二阶方程,以及初始值问题和边值问题。

2025-02-12 18:46:34 669

原创 数据分箱 bagging&boosting onehot独热编码 woe编码 sklearn的ensemble(集成学习)

ensemble(集成学习)在scikit-learn(通常简称为sklearn)库中,ensemble模块是一个提供集成学习方法的模块。集成学习方法通过结合多个基学习器(通常是决策树)来构建更加强大和鲁棒的模型。Bagging方法: 用于分类的Bagging集成。: 用于回归的Bagging集成。随机森林: 用于分类的随机森林算法。: 用于回归的随机森林算法。: 用于分类的Extra-Trees(极度随机树)算法。: 用于回归的Extra-Trees算法。AdaBoost。

2025-01-26 23:56:10 1086

原创 特征衍生与XGB

XGBoost通过迭代地添加决策树来最小化目标函数,每棵树都是基于前一棵树的残差(即梯度)构建的。它通过优化目标函数来学习树的结构和叶子节点的权重,同时引入了正则化项和缩减来防止过拟合。XGBoost的高效实现使其在许多机器学习任务中表现出色。

2025-01-26 13:04:36 743

原创 回首:生成一个决策树的步骤代码框架

客户信息 DataFrame})# 生成数据集# 划分训练集和测试集# 创建决策树回归模型# 预测# 计算均方误差# 输出结果X_train[:5], y_train[:5], mse_tree # 显示部分训练数据和决策树回归的均方误差。

2025-01-25 23:07:07 1115

原创 绘制决策树尝试3

创建决策树回归模型这行代码创建了一个对象,用于进行回归分析,并设置随机状态为 42。fit这行代码使用训练集数据X_train和y_train来训练决策树回归模型。

2025-01-25 21:58:06 1165

原创 环境变量配置与问题解决

如果你在脚本运行之后改变了环境变量(例如,通过系统的环境变量设置界面),这些更改不会自动反映到已经运行的 Python 脚本中。:如果你在不同的环境中修改了环境变量(例如,在命令提示符中或通过系统设置),那么这些更改可能不会影响到其他环境(例如,Python 脚本或 IDE)。:如果你在脚本运行之后添加了路径到系统的环境变量,那么这个更改不会影响到已经运行的脚本。脚本开始执行时的环境变量是固定的。记住,环境变量的更改不会立即影响到所有正在运行的程序,只有新启动的程序才会使用新的环境变量设置。

2025-01-24 21:53:19 904

原创 绘制决策树尝试2 内含添加环境变量步骤

总结来说,并不是只能在当前文件夹找到文件;而是可以通过调整 “PATH” 环境变量或在命令行中提供完整路径来访问位于其他目录的可执行文件。

2025-01-24 16:49:18 1317

原创 绘制决策树的尝试1

import pydotplus复制这一行代码用于从IPython显示模块中导入Image类,它允许我们在Jupyter笔记本中显示图像。3.```pythonfrom sklearn.externals.six import StringIO复制 dot_data = StringIo()tree.export_graphviz(clf, out_file=dot_data,feature_names=x.columns,class_names=[‘bad’,

2025-01-23 23:29:11 1377

原创 数据分析 six库

six库是Python的一个兼容性库,旨在帮助开发者更轻松地编写同时兼容Python 2和Python 3的代码。它是由Ben Hoyt开发的,最初发布于2010年,并在Python社区中被广泛使用。简化代码迁移通过提供一系列函数和方法,使得开发者能够更容易地将Python 2代码移植到Python 3,或是在同一份代码中支持两个版本的Python。跨版本兼容性:six库定义了许多别名和适配器,可以平滑地在Python 2和Python 3之间过渡,例如字符串、字节、字典等数据类型的转换和处理。轻量级。

2025-01-23 22:54:57 949

原创 数据分析 变异系数

简单来讲就是平均值/标准差变异系数(Coefficient of Variation, CV)是一种相对量的变异指标,常用于衡量数据的离散程度。它通过标准差与均值的比值来表示,消除了单位差异的影响,使得不同量纲、均值不同的数据之间可以直接比较其离散程度。一般来说,变量值平均水平高,其的测度值越大,反之越小。变异系数是衡量资料中各观测值变异程度的另一个。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。

2025-01-22 23:08:35 760

原创 智能风控 数据分析 groupby、apply、reset_index组合拳

这个结合apply及lambda自定义函数的方法会丢失列名且仅有此列。

2025-01-22 22:47:05 1164

原创 叹、̅ ̅ |_观止、

精心规划也总是无法如愿的命运。不放实习的导师想让我搞科研。总是做出让自己后悔的选择。这种情况可能也找不到工作。到头来不如躺平乱选的人。哀叹如果当时那样就好了。不知何时才能自食其力。不知何时才能回报家人。

2025-01-18 23:59:22 110

原创 关于模型保存报错的问题

重要的是,无论你选择哪种后缀,确保在加载模型时使用相同的后缀名。此外,选择哪种后缀通常取决于个人或团队的习惯。如果你在一个团队中工作,最好遵循团队已经建立的约定。这两种后缀没有本质区别,它们都是用于保存PyTorch模型的状态字典(statedictionary)或整个模型(包括模型结构和参数)。实际上,你可以自由选择使用哪一个后缀,因为它们对PyTorch来说是完全等价的。这是最常见的选择,特别是在官方文档和示例中。把后缀ptl改成pth,可以保存模型字典。同样的模型,ptl报错,pth可以?

2025-01-18 22:54:26 1021

原创 从transformer到informer

Transformer模型的核心是自注意力(Self-Attention)机制,它能够同时考虑序列中所有单词之间的关系,而不是像传统的循环神经网络(RNN)那样顺序处理。总的来说,Informer可以看作是Transformer在处理长序列时间序列预测任务时的一个优化版本,它解决了Transformer在处理极长序列时遇到的计算复杂度和内存消耗问题。Transformer和Informer都是深度学习领域中的模型架构,它们主要用于处理序列数据,如自然语言处理(NLP)和时间序列预测任务。

2025-01-14 23:03:06 356

原创 一个例子水

【代码】一个例子水。

2025-01-10 23:27:40 99

原创 pytorch模型的保存失敗しましたが、

保存整个模型适用于模型结构不经常改变的情况,或者当你想要确保模型和参数一起迁移时。保存状态字典适用于模型结构可能会改变的情况,或者当你想要节省空间并且可以接受稍复杂的加载过程时。加载时,两者确实有所不同。保存整个模型时,可以直接加载模型实例。而保存状态字典时,需要先创建一个模型实例,然后加载状态字典到这个实例中。如果你更改了模型定义,原来的训练好的模型不会自动失效。只要你能够按照上述方法之一加载和适配旧的状态字典,你就可以继续使用这些参数。

2025-01-10 23:16:38 1027

原创 merge释疑(dataframe)

默认方法:how=inner,on=二者交集【是字段的交集,即列索引名的交集】

2025-01-09 23:45:49 313

原创 代码一跑,内存占用99%……【原因排查】

在PyTorch中,函数的参数用于控制是否在计算雅可比矩阵时创建计算图(computation graph)。这个参数对梯度计算和反向传播有重要影响。以下是对TrueFalse在您的代码中,被用于函数,这表明您可能在后续的操作中需要对这个雅可比矩阵进行求导。如果不需要对雅可比矩阵进行再次求导,或者您正在遇到内存问题,那么将设置为False可能会有所帮助。函数的参数用于控制是否在计算雅可比矩阵的过程中创建计算图(computation graph)。

2025-01-09 22:08:53 704

原创 minibatch时,损失如何记录

train_ch6。

2025-01-08 23:16:56 986

原创 【无标题】

【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】【无标题】

2025-01-07 23:30:11 657

原创 解决方案:RuntimeError: Trying to backward through the graph a second time (or directly access saved

这个错误信息来自PyTorch,一个流行的深度学习框架。错误信息的大致意思是,你正在尝试,或者在。在PyTorch中,当你调用,默认情况下: 这意味着你已经对这个计算图调用了一次方法,现在你正在尝试再次调用它。: 这指的是在调用释放了中间张量之后,你尝试访问这些张量。: 当你调用或时,计算图中保存的中间值会被释放。: 如果你需要再次对计算图进行反向传播,你应该在调用时设置参数。: 如果你需要在调用之后访问保存的张量,也应该设置。如果你确实需要再次调用,确保在第一次调用时设置。

2025-01-07 22:44:29 806

原创 haoxiangtangpinga~~~~~~>_<

虽然已经在躺了。

2025-01-06 23:38:45 96

原创 模型训练进阶:多变量minibatch、学习率衰减具体实现、训练和评估模式

使用中的预定义调度器,例如StepLR等。自定义调度器,通过继承类。现成的)# 创建优化器# 创建学习率调度器# 在训练循环中更新学习率# 训练代码...scheduler.step() # 更新学习率在上面的例子中,StepLR将在每30个epoch后将学习率乘以0.1。# 创建优化器# 创建自定义调度器# 在训练循环中更新学习率# 训练代码...scheduler.step() # 更新学习率在这个自定义调度器的例子中,我们定义了一个。

2025-01-06 18:37:38 763

原创 智能风控/数据分析 聚合 分组 连接

groupby是一个非常灵活和强大的工具,可以用于执行复杂的分组、聚合和转换操作。理解其基本用法和各种选项可以帮助你在数据分析中更有效地处理数据。

2025-01-06 18:37:25 1702

原创 关于PINN进一步的探讨

PINN(Physics-Informed Neural Networks,物理信息神经网络)通常被归类为一种的方法。在PINN中,神经网络的训练过程不仅依赖于数据点(例如实验观测数据),而且还结合了物理定律(通常是偏微分方程,PDEs)作为额外的监督信息。:在传统的有监督学习中,监督信号通常来自于数据标签。在PINN中,监督信号不仅包括数据标签(如果有的话),还包括物理定律。这些物理定律被编码为损失函数的一部分,用来指导神经网络的训练。:在训练过程中,神经网络通过最小化损失函数来学习。

2025-01-04 23:28:44 1046

原创 模型训练二三事:参数个数、小批量、学习率衰减、输入形状

定义:Mini-batch是指将数据集分割成较小的子集,每个子集包含一定数量的样本。这些子集通常远小于整个数据集的大小。目的:使用mini-batch的主要目的是为了内存效率和计算效率。如果一次性处理整个数据集,可能会因为内存不足而无法进行训练。同时,使用mini-batch可以利用矩阵运算的并行化,加速训练过程。# 训练代码...= 0:在这个例子中,每30个epoch,学习率就会乘以衰减率decay_rate。使用这些方法之一,你可以在训练过程中实现学习率的衰减,帮助模型更好地收敛。

2025-01-04 22:50:43 924

原创 ​B样条B样条曲线(B-spline Curves)-CSDN博客​

B样条曲线(B-spline Curves)-CSDN博客

2024-12-31 01:10:54 144

原创 今后让我们度过一个满是愉快之事的人生吧——友利奈绪

这句话“これからは楽しいことだらけの人生にしていきましょう”的语法是正确的。- にしていきましょう:这是一个意志形的动词短语,“にしていく”表示“变得...”,加上“ましょう”变成命令形,表示提议或鼓励。- の:这里的“の”是形容词性的助词,用来连接前面的形容词“楽しいことだらけ”和后面的名词“人生”,构成一个形容词性短语。- 楽しいことだらけ:表示“全是快乐的事情”,“だらけ”通常用来形容某事物充满了某样东西。これからは楽しいことだらけの人生にしていきましょう。- これからは:表示“从现在开始”。

2024-12-29 16:55:02 147

原创 新标日中1,【1】

これはし中学校のテストですが、大人でも分からないくらい難しい問題です。変化は早いで、私達もついていけないくらいです。真実ほど残酷なものはない。没有什么比现实更残酷了。

2024-12-28 12:59:58 124

原创 主成分分析是线性降维方法

PCA的这个线性特性体现在它通过原始特征的线性组合来构造新的主成分。因此,PCA适用于数据分布近似线性时的情况。如果数据的结构较为复杂,可能需要非线性降维方法来更好地处理。,以此类推,第二个坐标(第二个主成分)具有次大的方差,以此类推。这样,通过选择前几个主成分,就可以保留数据中最主要的变异信息,同时降低了数据的维度。,使得数据在新坐标系中的第一个坐标(第一个主成分)主成分分析(PCA)是一种常用的线性降维方法。

2024-12-27 21:41:14 263

原创 深度学习解pde,心电图一般的损失。。

由于深度学习模型通常包含大量的随机性因素(如权重的随机初始化、dropout的使用等),所以每次训练的结果可能会有所不同。可以尝试使用更高精度的浮点数(如float64)来进行计算,或者使用数值稳定的技术(如归一化、激活函数的选择等)来提高模型的数值稳定性。:在某些情况下,特别是在深层网络中,梯度可能会变得非常大,从而导致权重更新过大,使损失函数急剧上升。:如果使用的软件版本过低或者过高,可能会导致一些兼容性问题,从而影响训练过程的稳定性。可以尝试减少模型的规模,或者使用分布式训练等技术来缓解内存压力。

2024-12-25 00:19:51 594

原创 多目标跟踪。。

本文针对厚尾噪声条件下不规则星凸形多扩展目标跟踪问题,提出了一种基于多伯努利滤波的方法。

2024-12-24 17:21:00 1146

原创 集群毁伤论文。。

本文提出了一种基于统计模拟法的集群目标毁伤效果评估方法,并通过实例验证了方法的有效性。该方法可以用于评估不同杀伤兵器、射击方法和弹药消耗对集群目标的毁伤效果,为火力打击和作战计划制定提供科学依据。

2024-12-23 18:34:55 625

原创 解方程论文【3】。。

先放大纲,明天续_まだ明日2024年12月23日00:51:04太困了。

2024-12-23 00:52:16 306

原创 解方程论文【2】。。

AISEA 是专门针对核反应堆物理开发的中子扩散问题求解软件包。P8具备数据驱动和物理驱动两种方法,能够应对不同物理工况和几何维度。P9使用方便,仅需提供采样点、相关系数和计算区域即可。P8。

2024-12-23 00:46:40 811

原创 一个pinn,一个莫名其妙论文。

PINN(Physics-Informed Neural Networks,物理信息神经网络)是一种结合了物理定律(通常是偏微分方程)与数据驱动的深度学习模型。PINN通常被分类为有监督学习的一种形式,原因如下:训练过程:在训练PINN时,网络需要同时学习数据(例如,边界条件或初始条件)和物理定律(例如,偏微分方程)。这个过程涉及到一个损失函数,它通常由两部分组成:一部分是数据损失,用于衡量网络预测与实际数据之间的差异;另一部分是物理损失,用于衡量网络预测与物理定律之间的不一致性。监督信号:物理定律提供了额

2024-12-22 00:56:12 997

原创 《机器学习》流形学习 流形 局部线性嵌入 等距映射(Isomap: 测地线MDS降维

在数学中,流形的正式定义涉及拓扑和微分几何的概念。以下是n维流形的数学定义:豪斯多夫空间:M是一个豪斯多夫空间,即对于M中的任意两个不同的点p和q,都存在不相交的开集U和V,使得p ∈ U且q ∈ V。第二可数性:M有一个可数的基,即存在一个可数集合{U_i},它是M的开覆盖,并且对于M中的任意开集V,V都可以表示为这些U_i的并集。局部欧几里得性:对于M中的每一个点p,都存在一个开集U包含p,使得U同胚于n维欧几里得空间R^n。

2024-12-20 21:23:44 852

原创 新标日可能形

かく、書ける(可能形原型) 、書けます(可能形ます形)話す、はなせる、話せます。

2024-12-19 22:23:20 158

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除