一直以为头顶上的云是从远方飘过来的。
于是搬张椅子坐在山顶上看云。
可是怎么看都是晴空万里。不久,阳光变得越来越温暖也越来越刺眼。
开始打盹。
等再次睁开眼睛时,头顶上已经出现了一朵白云。
看看表,才过去五分钟。头顶上静悄悄的云不可能在这么短的时间内从视野以外的远处飘过来。
一个念头从这位科学家的心中闪过:难道这一朵云是无中生有?
看上去没有结构的天空中充满了各种各样的分子,这些分子之间局部的相互作用导致了某些结构的涌现,比如云,比如龙卷风。
于是提出一个问题:巴西一只蝴蝶挥动翅膀会不会引起得克萨斯州的一场龙卷风?
于是便出现了一个新名词“蝴蝶效应”。
有趣的是,以蝴蝶效应理论的提出者洛仑兹先生的名字命名的奇异吸引子(strange attractor)也具有蝴蝶的形状。
于是又出现了一门新的学科——混沌(chaos)动力学。
混沌与我们每天吃的馄饨有关系吗?
还别说,真的就有关系!
要包馄饨,首先就得揉面。
你可以作这样一个试验,将一块面切成矩形的形状,然后按照下面的规则进行操作。伸展时,先将面沿长边拉长一倍,再将面的一个宽边拉宽一倍;折叠时,将已拉宽的一边对折后与没有拉宽的一边会合,使面尺寸大小恢复到原样。我们来观察一下实施操作后的效果:在第一次伸展后,面上邻近的轨迹发散开来,相邻轨迹间的距离加大了一倍;随即进行的第一次折叠使面的大小回复到原尺寸,但面产生了折皱。出现了细致结构;……;不断交替地进行这两种操作便可得到一个最简单的奇异吸引子——Rossler吸引子。
分析上述构造奇异吸引子的过程,我们就能够理解奇异吸引子的奇异性是如何形成的,并进而理解混沌运动的特性。在构造奇异吸引子的过程中,伸展和折叠操作起着极其重要的作用。首先,伸展操作将原来微小的不确定性放大,使相邻状态不断分离;继而,折叠操作这种最强烈的非线性作用使得原来相隔甚远的轨道相互接近,将系统原有的大尺度信息抹掉。随着伸展和折叠操作的无限重复,必然导致轨道无休止地时而分离,时而汇聚,穿插缠绕,但同时并不自交或重叠,于是,这种系统而有效地除去初始信息并代之以新信息的过程便造就出奇异吸引子的奇异性:一方面起着“泵”的作用,把微小的变化提高到宏观的尺度上表现出来;另一方面又是一把“刀”,将过去与未来之间的因果关系斩断,使系统失去了可预测性。同时,伸展和折叠操作的无限进行还为奇异吸引子建造了复杂而精细的几何结构,这种结构既能保证奇异吸引子只占据有限的空间,勾勒出有界的轮廓,又能使奇异吸引子上任意两条相邻的轨道具有指数发散性,描画出无穷无尽的细致结构。对这种几何结构的认识有赖于分形。
分形(Fractal)是1975年由美国哈佛大学应用数学教授曼德布罗特(Mandel-rot, Benoit)提出并命名的一个崭新的概念,它指的是一类貌似无规、复杂混乱,但又具有自相似性的体系,这类体系最突出的几何特征是其维数可以为分数。自然界中分形结构比比皆是,如蜿蜒曲折的海岸线、凹凸不定的浮云、枝繁叶茂的大树、人体内的血管体系等等,借助于分形大自然创造了许多精巧绝伦的奇迹。以人体内的血管系统为例,这个从主动脉到毛细血管构成的一个分支众多、表面积巨大的网,利用分形结构同时满足了人体生理上的两项必需:既有效地保证了人体内每个细胞与血管的距离尽可能的近——最远不超过3—4个细胞,又只占用了极小的空间——血管和血液所占体积的总和不到人体体积的5%。这些大自然中的分形是由系统内部的自组织而形成的分形,被称之为广义的物理分形。还有一种分形是按严格的数学规则生成的,称为数学分形,如,康托点集(康托尘埃)、科克曲线(科克雪花)、谢尔宾斯基地毯、谢尔宾斯基海棉等。严格的数学分形可以作为物理分形的数学模型,如科克曲线是真实的海岸线的一个恰当的数学模型,康托点集是电子通讯线路中误差的时间分布模型,等等。
1997年,格林斯潘挥动了他的蝴蝶翅膀,将美联储的利率提高了一个百分点,不久一场席卷东南亚的龙卷风(金融危机)就开始了。