
前两天做题遇到一道关于因式分解的题目:
因式分解:![]()
刚看到这道题觉得很简单,通过简单的运算可知:
因为自己脑海中浮现出来的就是因子定理,如果我能找到一个常数
额...接下去要找
1.提公因式法
2.公式法
3.十字相乘法(双十字相乘法)
4.待定系数法
5.求根法
6.分组分解法
一、提公因式法
这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:
因式分解下列多项式:
(1);
(2);
(3)![]()
.
二、公式法
因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:
还有两个常考的
例题:
因式分解:![]()
![]()
![]()
![]()
三、十字相乘法(双十字相乘法)
简单的十字相乘其实就是公式
比十字相乘法再进一步的还有双十字相乘法,这种方法适用的是型如:

利用双十字分解法的步骤就是
1.先用十字相乘法分解,得到
;
2.把常数项进行拆分得到
,使得
;
3.最后就得到了.
看着有点复杂吗?那么来一道例题好了
例题:
因式分解:![]()
首先考虑![]()
然后考虑分解,使得
与
分别交叉相乘得到
。这个还是比较容易的,很快就能发视
就可以了。
最后可知:![]()
四、待定系数法
待定系数法,肯定就是设未知数然后去解方程,比如分解如下多项式:
如果多项式相等,那么两个多项式每一项前对应的系数相等,所以所以我们就可以得到关于
其实前面的双十字相乘法中,如果我们不知道如何拆分
再来一道题看看
例题:
因式分解:![]()
由于![]()
不妨设两个一次项分别为![]()
于是:![]()
比较对应系数可知,![]()
所以,.
五、求根法
求根法其实就是我最开始想到的方法,基于的就是因式定理:
若
所以面对一个多项式,我们只要找到一个常数使得多项式为0,那么我们就能够把原本的多项式次数降下来。看到例题就明白了:
例题:
因式分解:![]()
这里尝试发现,所以必有一个因子
,再根据长除法可知:
.
六、分组分解法
分组分解一看这个名字就知道是要把多项式进行分组,然后提取出公因子,从而达到因式分解的目的。但是分组分解法有的时候没那么容易看出来,可能需要一点感觉。
我们利用分组分解法再来做一下上面的例题,
例题:
(1)因式分解:![]()
![]()
(2)因式分解:![]()
![]()
那么回过头来我们再看看最开始的那道题:
因式分解:![]()
【详解】
这道题我用的方法是分组分解法和公式法,刚开始想用换元令
非常感谢知友 @张锦州 提供的方法:
![]()
令![]()
于是![]()
因此,.
哈哈,估计出题者就是想这么考的~
想了解更多关于初中数学竞赛及高中自主招生的数学知识,可参阅:
双木止月Tong:高中自主招生zhuanlan.zhihu.com