u=fhtx(a,b,f,e)n=1;h=b-a;T=0.5*h*(f(a)+f(b));m=0;for j=0:n-1m=m+f(a+0.5*h)*j*h;endS=0.5*(T+h*m);while |S-T|>=eT=S;n=2n;h=0.5*h;S=0.5*(T+h*m);endu=T;end,不懂,通过热www.mh456.com防采集。
可以利用2113matlab的trapz函数命令x=0:0.00001:1;%x用来储存积分点5261y=(x+1).*sin(x);%y用来求解积分点x处的函数值I=trapz(x,y)I = 0.7608663730793 验证该问题的4102解析解syms xy=(x+1)*sin(x);%被积1653函数表达式II=int(y,0,1)II =sin(1) - 2*cos(1) + 1 %II即为该被积函数的解析解II_E=eval(II) II_E = 0.760866373071617 %II的数值解%可以看出梯形求积公式在步长等于0.00001的情况下,数值积分的解与解析解的数值能达到小数点后11位保持一致
有了答案顺便告诉我一声。。
内容来自www.mh456.com请勿采集。