
自然和自然的规律隐藏在茫茫黑夜之中。上帝说:让牛顿降生吧。于是一片光明。——亚历山大·蒲柏
上帝又说:还要有光,于是便有了麦克斯韦方程组。

图片来源:http://mentalfloss.com
位于苏格兰爱丁堡城堡山谷的一侧有一条大街,乔治大街, 因国王乔治而得名。在乔治大街的末端有一座雕像——詹姆斯·克拉克·麦克斯韦, 苏格兰最杰出的科学家之一,今天我们要说的就是以他命名的一组方程。

一、基本知识准备
自然界中有很多的现象,如果仔细观察,会觉得特别有意思。比如每天抬头都能看到的太阳:

你、我能安心的在这刷知乎,很大程度上拜它所赐,太阳光是地球能量的主要来源,距离太阳1天文单位的位置(也就是在或接近地球),直接暴露在阳光下的每单位面积接收到的能量,其值约相当于
当然还有其他的一些自然现象,比如经常骚扰沿海同胞的台风:

台风发源于热带海面,那里温度高,大量的海水被蒸发到了空中,形成一个低气压中心。随着气压的变化和地球自身的运动,流入的空气也旋转起来,形成一个逆时针旋转的空气漩涡,这就是热带气旋。只要气温不下降,这个热带气旋就会越来越强大,最后形成了台风。台风是我们最常见的另一种模型:中心对周围的旋转作用。
相信大家都走过环山路,小编前两天去了一趟恩施大峡谷,50公里的路要开2个多小时,不明所以的童鞋还以为司机在绕路呢?——实际司机就是在“绕路”,但是不得不饶。

在课堂上,老师问同学们:假设你要去爬座山,海拔是2000米,你要选择怎样上去最省力气?小明眼睛一转,说:我坐索道上去.......老师:小明,你...出...去!这是属于开挂,不算数。老师倒也难为同学们了:若选择最陡的那条路呢?距离是近了,但是费力气啊;要是选择多绕几圈呢,倒是不那么费力气了,但是距离远多了,这真是一个费脑子的问题。现在我们假如要去救援,时间最宝贵,要求距离最短,你该怎么办?——那就要选最陡的那条路,——那什么是陡?山路是我们最常见的第三种模型:前进的方向选择问题。
二、散度、旋度及梯度
万有引力定律其实胡克是有很大贡献的,但冠名权却属于牛顿,为什么?因为牛顿数学牛逼啊,光有想法不行,你得能用数学表达出来,才能让人信服。接下来我们就看看,数学家是如何描述上面几个问题的。
2.1 散度
前面我说道,我们每时每刻都在接收太阳带给我们的能量,在地球附近,直接暴露在阳光下的每单位面积接收到的能量,其值约相当于

沿着太阳表面,作一条封闭曲线,把曲线上的
就是通过此曲线的通量,常识告诉我们,如果这个曲线是封闭的,不管这个曲线多大,长成什么样子,只要里面的太阳没变,这个通量就是个恒定值。

但实际太阳不是一个圆,而是一个球,所以我们要把封闭曲线扩展成封闭的曲面:

虽然太阳对于我们来说很大,放在整个在整个宇宙里面就非常渺小了——就是一小点点而已。假如不是以地球视野,而是以宇宙的视野来看太阳的的辐射,它那点通量如果还用一个封闭的曲面来算的话,那就显得太多余了——就一个“点点”啊!

图片来源:http://sciencevibe.com
好了,封闭曲面开始瘦身了,一直缩小到极限为0,用此时的通量,除以封闭曲面所围体积,就能得到此点的辐射强度:
其中,
2.2 旋度
我们要解决的,不仅有辐射,还有漩涡。

有了散度的概念做铺垫,旋度就好理解一点了,先说一下什么是环量:和通量类似,是指矢量沿着路径的闭合曲线积分,它能表示向量场围绕某一点的旋转程度。最常见的例子就是家里的洗衣机了:

环量的表达式为:
其中
我们也很容易推出此点旋度,
其中,

2.3 梯度
梯度是这三个概念里面外面最熟悉的了,它表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大。简单点来说梯度能表达函数在某一点处变化最快的方向,既然是是方向,所以梯度也是一个矢量。表达式不复杂:

从我们朴素的直观感觉来说,梯度大能跟那些词联系起来呢?“险”?“陡”“居高临下”?——文雅一点,梯度代表着“势”。山势、地势,权势......老子说:“道生之,德畜之,物形之,势成之。”“势”是一个令人着迷的词,从古到今,人们一直都在使用它,但谁也说不清它。
2.4 什么是
可能细心的童鞋已经注意到,在计算散度、旋度和梯度时,我们采用了一个符号:
nabla算符的定义式如下:
对于标量场,我们假设标量函数为:
对于矢量场,我们假设矢量函数为:
定义了
梯度:
散度:
旋度:
三、如何理解麦克斯韦方程组
前面我们介绍了什么是散度、旋度及梯度,以及在数学上怎么表示,接下来就是见证奇迹的时刻了,先摆上大餐,微分形式的麦克斯韦方程组:
其中
3.1 散度说的是什么事
公式

公式

好了,既然电场有可能是无源场,磁场一直是无源场,那电场和磁场是怎么产生的呢?这就要看电磁场的另一个特性了——旋度。
3.2 旋度又说的什么事
公式

公式

公式
3.3 电磁波是个什么玩意
前面我我们们说到:电荷改变电场散度;电流改变磁场旋度;变化的电场或磁场也是改变旋度。而旋度意味着螺旋曲线,那是不是我们能观察的到呢?——能啊,电磁波不就是嘛!
想象在真空中,周围什么都没有,电荷密度和电流密度均为0,麦克斯韦方程组的微分形式就简化成了:
通过简单的推导,我们可以得出关于电场和磁场的两个方程:
这两个方程具有波动方程的形式,这说明了变化的电磁场以波的形态存在于自由空间中。其中

麦克斯韦方程组揭示了电场与磁场相互转化中产生的对称性优美,这种优美以现代数学形式,特别是在采用了nabla算子之后,得到了充分的表达。四个方程,两个用散度表示,两个用旋度表示,将复杂的电磁现象降低到了日常生活经验就能认知的程度:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场,最终组成一个统一的电磁场。它所揭示出的电磁相互作用的完美统一,为物理学家树立了一种信念:物质的各种相互作用是不是应该在在更高层次上是统一的呢?
四、为什么要提梯度
前面只说散度和旋度,没说梯度的事啊,是不是电磁场里面就没梯度的事呢?别着急,这就要说呢。我们说,在真空中(无源情况下),麦克斯韦方程退化为:
该方程称之为波动方程,可以描述自然界中的各种的稳态波动现象,包括横波和纵波,例如声波、光波和水波,在声学,电磁学,和流体力学等领域应用广泛,其变种可以在量子力学和广义相对论中见到。
如果假定波在时间上是以某个频率做简谐振动的,
其中
倘若在亥姆霍兹方程中,解的振动频率为零,也就是可以再去掉时间项,方程进一步退化为:
这就是大名鼎鼎的拉普拉斯方程,
前面说方的都是无源的情况,有源时,拉普拉斯方程变形为:
该方程称之为泊松方程,有热源时的固体热传导就符合泊松方程。
可能有些童鞋有点疑惑了,我们常见的无源传热方程长的是这个样子啊:
这俩货其实是一回事!只不过
说的是什么事?——空间中没有热源时的温度分布;
——在
可见,如果用散度、旋度和梯度以及它们的组合来表示很多自然规律就简单的多了。这在本质上是我们发明了一个更复杂的概念来去描述一个相对复杂的现象,从而显得简单了。但前提是,你要花时间去消化这些概念,否则,如果只看公式,往往是只见迷雾,不见泰山。