matlab蚁群算法优化svm,求大神帮我修改下蚁群算法优化 SVM 参数的程序 实在想不通了...

ca56232b3bbedf9a539d07f37fffb99a.gif

3144d8b7615c79d9f638db40d5689d26.gif

a218af6549b45ee526caf607ebff1358.gif

0f8df0e29816ae721419de940fb833d1.gif

求大神帮我修改下蚁群算法优化 SVM 参数的程序 实在想不通了

function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

%%-------------------------------------------------------------------------

%% 主要符号说明

%% C n个城市的坐标,n×2的矩阵

%% NC_max 最大迭代次数

%% m 蚂蚁个数

%% Alpha 表征信息素重要程度的参数

%% Beta 表征启发式因子重要程度的参数

%% Rho 信息素蒸发系数

%% Q 信息素增加强度系数

%% R_best 各代最佳路线

%% L_best 各代最佳路线的长度

%%=========================================================================

%%第一步:变量初始化

n=size(C,1);%n表示问题的规模(城市个数)

D=zeros(n,n);%D表示完全图的赋权邻接矩阵

for i=1:n

for j=1:n

if i~=j

D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5;

else

D(i,j)=eps;      %i=j时不计算,应该为0,但后面的启发因子要取倒数,用eps(浮点相对精度)表示

end

D(j,i)=D(i,j);   %对称矩阵

end

end

Eta=1./D;          %Eta为启发因子,这里设为距离的倒数

Tau=ones(n,n);     %Tau为信息素矩阵

Tabu=zeros(m,n);   %存储并记录路径的生成

NC=1;               %迭代计数器,记录迭代次数

R_best=zeros(NC_max,n);       %各代最佳路线

L_best=inf.*ones(NC_max,1);   %各代最佳路线的长度

L_ave=zeros(NC_max,1);        %各代路线的平均长度

while NC<=NC_max        %停止条件之一:达到最大迭代次数,停止

%%第二步:将m只蚂蚁放到n个城市上

Randpos=[];   %随即存取

for i=1:(ceil(m/n))

Randpos=[Randpos,randperm(n)];

end

Tabu(:,1)=(Randpos(1,1:m))';

%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游

for j=2:n     %所在城市不计算

for i=1:m

visited=Tabu(i,1:(j-1)); %记录已访问的城市,避免重复访问

J=zeros(1,(n-j+1));       %待访问的城市

P=J;                      %待访问城市的选择概率分布

Jc=1;

for k=1:n

if length(find(visited==k))==0   %开始时置0

J(Jc)=k;

Jc=Jc+1;                         %访问的城市个数自加1

end

end

%下面计算待选城市的概率分布

for k=1:length(J)

P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

end

P=P/(sum(P));

%按概率原则选取下一个城市

Pcum=cumsum(P);     %cumsum,元素累加即求和

Select=find(Pcum>=rand); %若计算的概率大于原来的就选择这条路线

to_visit=J(Select(1));

Tabu(i,j)=to_visit;

end

end

if NC>=2

Tabu(1,:)=R_best(NC-1,:);

end

%%第四步:记录本次迭代最佳路线

L=zeros(m,1);     %开始距离为0,m*1的列向量

for i=1:m

R=Tabu(i,:);

for j=1:(n-1)

L(i)=L(i)+D(R(j),R(j+1));    %原距离加上第j个城市到第j+1个城市的距离

end

L(i)=L(i)+D(R(1),R(n));      %一轮下来后走过的距离

end

L_best(NC)=min(L);           %最佳距离取最小

pos=find(L==L_best(NC));

R_best(NC,:)=Tabu(pos(1),:); %此轮迭代后的最佳路线

L_ave(NC)=mean(L);           %此轮迭代后的平均距离

NC=NC+1                      %迭代继续

%%第五步:更新信息素

Delta_Tau=zeros(n,n);        %开始时信息素为n*n的0矩阵

for i=1:m

for j=1:(n-1)

Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i);

%此次循环在路径(i,j)上的信息素增量

end

Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);

%此次循环在整个路径上的信息素增量

end

Tau=(1-Rho).*Tau+Delta_Tau; %考虑信息素挥发,更新后的信息素

%%第六步:禁忌表清零

Tabu=zeros(m,n);             %%直到最大迭代次数

end

%%第七步:输出结果

Pos=find(L_best==min(L_best)); %找到最佳路径(非0为真)

Shortest_Route=R_best(Pos(1),:) %最大迭代次数后最佳路径

Shortest_Length=L_best(Pos(1)) %最大迭代次数后最短距离

subplot(1,2,1)                  %绘制第一个子图形

DrawRoute(C,Shortest_Route)     %画路线图的子函数

subplot(1,2,2)                  %绘制第二个子图形

plot(L_best)

hold on                         %保持图形

plot(L_ave,'r')

title('平均距离和最短距离')     %标题

function DrawRoute(C,R)

%%=========================================================================

%% DrawRoute.m

%% 画路线图的子函数

%%-------------------------------------------------------------------------

%% C Coordinate 节点坐标,由一个N×2的矩阵存储

%% R Route 路线

%%=========================================================================

N=length(R);

scatter(C(:,1),C(:,2));

hold on

plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)],'g')

hold on

for ii=2:N

plot([C(R(ii-1),1),C(R(ii),1)],[C(R(ii-1),2),C(R(ii),2)],'g')

hold on

end

title('旅行商问题优化结果 ')

运行后得到巡游路径,路线图和收敛曲线如下:

>>c= [1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;4196 1004;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;4263 2931;3429 1908;3507 2367;3394 2643;3439 3201;2935 3240;3140 3550;2545 2357;2778 2826;2370 2975]

>>m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Q=100;

>>ACATSP(C,NC_max,m,Alpha,Beta,Rho,Q)

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,算法可以用于优化SVM的超参数选择。具体而言,可以使用算法来搜索SVM中的惩罚参数C和核函数参数γ的最优值。 以下是使用Python实现基于算法SVM优化代码的示例: ```python import numpy as np from sklearn import svm from sklearn import datasets from sklearn.model_selection import ParameterGrid from sklearn.metrics import accuracy_score # 算法参数 max_iter = 100 # 最大迭代次数 ant_num = 10 # 蚂数量 alpha = 1 # 信息素重要程度因子 beta = 5 # 启发式因子 rho = 0.1 # 信息素挥发因子 q0 = 0.9 # 贪婪因子 tau0 = 1 # 初始信息素值 tau_max = 10 # 最大信息素值 tau_min = 0.1 # 最小信息素值 # 加载数据 iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # 构建SVM模型 def build_svm_model(C, gamma): model = svm.SVC(C=C, kernel='rbf', gamma=gamma) model.fit(X, y) y_pred = model.predict(X) return accuracy_score(y, y_pred) # 初始化信息素矩阵 tau = np.ones((len(ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]})), ant_num)) * tau0 # 开始迭代 for t in range(max_iter): # 初始化蚂位置 ants = np.zeros((ant_num, 2), dtype=int) # 蚂选择参数 for i in range(ant_num): # 计算概率矩阵 p = np.zeros(len(ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]}))) for j, params in enumerate(ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]})): if params['C'] < 1e-3 or params['gamma'] < 1e-3: p[j] = 0 else: p[j] = (tau[j, i] ** alpha) * (build_svm_model(params['C'], params['gamma']) ** beta) p = p / np.sum(p) # 贪婪选择 if np.random.rand() < q0: pos = np.argmax(p) else: pos = np.random.choice(len(p), p=p) # 记录蚂位置 ants[i] = pos # 更新信息素矩阵 delta_tau = np.zeros((len(ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]})), ant_num)) for i in range(ant_num): for j in range(len(ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]}))): delta_tau[j, i] = 1 / build_svm_model(ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]})[j]['C'], ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]})[j]['gamma']) delta_tau[:, i] = delta_tau[:, i] / np.sum(delta_tau[:, i]) tau = (1 - rho) * tau + rho * delta_tau # 限制信息素矩阵的范围 tau = np.maximum(np.minimum(tau, tau_max), tau_min) # 输出最优参数组合和对应的准确率 best_params = ParameterGrid({'C': [0.1, 1, 10, 100], 'gamma': [0.1, 1, 10, 100]})[np.argmax(np.sum(tau, axis=1))] best_acc = build_svm_model(best_params['C'], best_params['gamma']) print('Best parameters:', best_params) print('Best accuracy:', best_acc) ``` 在上述代码中,我们使用sklearn库中的SVC类来构建SVM模型。我们使用ParameterGrid函数来生成C和γ参数的所有可能组合,然后使用算法来搜索最优参数组合。在每一次迭代中,我们首先使用已有的信息素矩阵和SVM模型来计算每个参数组合的概率,然后根据贪婪因子选择参数。接着,我们使用SVM模型计算选择的参数组合的准确率,并根据该准确率更新信息素矩阵。最后,我们输出最优参数组合和对应的准确率。 需要注意的是,上述代码中的算法是一种基本的实现方式,可以根据具体问题对其进行改进和优化

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值