写在前面
绝对值和相反数一节,是学习有理数运算前的重要内容,其知识点多,概念易混淆,是很多学生的难点,因此,计划用2讲的篇幅,对这一节内容的重难点,易错点做一个归纳!
本讲主要针对这一节的典型例题.
一、知识脉络
1.绝对值
(1)绝对值的定义(几何意义)
数轴上,表示一个数的 点与 原点的距离,叫做这个数的绝对值.
(2)绝对值的表示方式
数a的绝对值记作|a|.
(3)绝对值的非负性
一个数的绝对值是非负数,记作|a|≥0.
(4)绝对值的代数意义
补充:
绝对值是它本身的数是非负数.
绝对值是它相反数的数是非正数.
2.相反数
(1)相反数的定义
符号不同、绝对值相同的两个数互为相反数.
(2)相反数的表示方式
这个数的前面添加一个“-”号.
数本身的表示方式
这个数的前面添加一个“+”号.
(3)多重符号的化简
在不含绝对值形式前提下
若一个正数前面有偶数个“-”,其结果为正,
若一个正数前面有奇数个“-”,其结果为负.
(4)相反数的一些形式
a,b互为相反数←→a+b=0
二、典型例题
(1)0+0型及变式
例1
已知|x-3|+|y-0.5|=0,求x、y的值.
分析:
根据绝对值的非负性,两个非负数相加,和要为0,只可能是0+0型,因此,两个绝对值均为0.
解答:
由题意得,
|x-3|=0,|y-0.5|=0
∴x=3,y=0.5
变式
若|a-3|与|3b-6|互为相反数,求a-b的值.
分析:
由两式互为相反数,得到两式之和为0,转化为0+0型.
解答:
由题意得,|a-3|+|3b-6|=0
|a-3|=0,|3b-6|=0
∴a=3,b=2,a-b=1
(2)相反数的应用
例2
若x与3x-4互为相反数,则x=_____.
分析:
由两式互为相反数,得到两式之和为0,转化为关于x的方程.
解答:
由题意得,
x+3x-4=0
4x-4=0
x=1
变式
若|m-2|与-7互为相反数,则m =_____.
分析:
由两式互为相反数,得到两式之和为0,|m-2|=7,此时有两种思路:
一种,可得m-2=±7,
一种,利用绝对值的几何意义,|m-2|表示数m的点与数2的点之间的距离,距离为7,则数m的点只需将数2的点向左或向右平移7个单位得到.
解答:
由题意得,
|m-2|=7
m-2=±7,
m=9或-5
(3)多解问题
例3
如果两个有理数的绝对值分别是3和1,求表示这两个数的点之间的距离.
分析:
对于两个有理数,我们不妨设为a,b,数a的绝对值为3,则a=±3,同理,b=±1,此时,两个点的距离,就需要分情况讨论,a,b各有2种情况可搭配,总共四种情况.最后别忘了总结.
解答:
设两个有理数分别为a,b,
由题意得,a=±3, b=±1,
当a=3,b=1时,这两个数的点之间距离为2.
当a=3,b=-1时,这两个数的点之间距离为4.
当a=-3,b=1时,这两个数的点之间距离为4.
当a=-3,b=-1时,这两个数的点之间距离为2.
综上,表示这两个数的点之间的距离为2或4.
例4
已知|a|=5,|b|=3,且|a-b|=b-a,求a、b的值.
分析:
由第一个条件,易知a=±5, b=±3,由|a-b|=b-a,可知a-b的绝对值是它的相反数,则a-b是非负数,a-b≤0,a≤b,从而可以分类讨论,确定a,b的值.
解答:
由题意得,
a=±5, b=±3
∵|a-b|=b-a,
∴a-b≤0,a≤b,
例5
分析:
由文字语言,我们要学会翻译为数学符号语言,互为相反数,则和为0,商为-1.互为倒数,则积为1,绝对值是2,m=±2,然后分类讨论求值.
解答:
(4)绝对值化简
例6
|3-π|=_____.
分析:
绝对值化简,首先要考虑原式的正负性,正数绝对值是本身,负数绝对值是相反数,显然3-π是负数,绝对值是其相反数.
解答:
|3-π|=π-3
例7
若1<x<5,|x-1|+|x-5|=_____.
分析:
由1<x<5,可得x-1>0,x-5<0,则前者绝对值是其本身,后者是其相反数.
解答:
原式=x-1+5-x=4
例8
若a<b<0,化简|a-b|-|a|+|b|.
分析:
由a<b,知a-b<0,故其绝对值是其相反数,a,b的绝对值均为其相反数.
解答:
原式=b-a-(-a)+(-b)
=b-a+a-b
=0
★本讲思考题★
答案请后台回复关键词 绝对值化简 获取
【互动必读】一文教你查询往期文章、直接下载!
【重难突破】3张表掌握初中数学所有重难点,提分必读!
【知识汇总】初中数学最全公式定理,不看后悔!
【中考2020】试题分类精讲 1—— 尺规作图
【中考2020】专题突破(12) 一道翻折、垂直处理、隐圆大集合的好题
【中考2020】专题突破(11) 从“动边对定角”到“定角定高”
【中考2020】专题突破(10) 抛物线背景下半角处理的若干妙法
【中考2020】专题突破(9) 二次函数经典题 — 当胡不归遇上垂直处理
【中考2020】专题突破(8) 当尺规作图遇到斜大于直
【中考2020】专题突破(7) 网格作图与计算
【中考2020】专题突破(6) 隐藏较深的边对角---隐圆模型
【中考2020】专题突破(5) 再谈面积问题
【中考2020】专题突破(4) 再谈瓜豆原理
【中考2020】专题突破(3) 图形折叠的应用
【中考2020】专题突破(2) 将军饮马之最短路径
【中考2020】专题突破(1)“胡不归”与“阿氏圆”
【真题速递】141套2020中考试卷一键下载
【专题突破】24道最新中考压轴题详细解析
【基础提升】初中几何三大变换易错题集锦!
【专题突破】“中点问题”的7大模型
【专题突破】2020中考二次函数压轴题精选
【专题突破】图形旋转与翻折典型例题解析
【初高衔接】高中视角下的中考数学
【专题突破】 几何“动点问题”中的最值模型
特级教师忠告:高中和初中的学习完全不同!
【中考2020】考前三天及考试期间注意事项
【中考2020】考前最后一堂数学课
【中考2020】数学中考考前备考策略
【中考2020】中考数学答题技巧
【模型突破】利用辅助圆求解动点最值问题
【模型必读】相似模型全梳理,附送20道绝妙好题
【中考热点】定角定高模型初探
【最值模型】两点之间,线段最短!(1)
【中考压轴】因动点产生的三角形相似问题
【三周年特辑】对一道二次函数压轴题的探究!
【考前突破】中考易错考点全整理
【专题提升】几何综合图形关系的再探究
【中考2020】“线段最值”系列之——轨迹思想
【专题突破】特殊三角形必考解题策略汇编
【专题突破】几何最值问题12小类模型全梳理
【好题欣赏】由一道比例定值题引发的联想
【中考2020】初中数学常见几何模型解析完整版
【中考真题】函数交点问题全解析
【解题探究】一类线段最值问题的本源解法——斜大于直
【中考必读】几何线段最值求法大全
【中考数学】中考专题复习指导兼谈核心素养命题
【中考压轴】最短路径问题2【中考压轴】最短路径问题(1)
如何后台回复!!!
请仔细看下方动图!!!
如何查找往期文章!!! 请看下方图片!!! 点分享 点点赞 点在看