我还想不出如何在N维中实现这一点,但这里是二维版本:>>> a = np.random.standard_normal(size=(2,5))
>>> a
array([[ 0.72322499, -0.05376714, -0.28316358, 1.43025844, -0.90814293],
[ 0.7459107 , 0.43020728, 0.05411805, -0.32813465, 2.38829386]])
>>> i = np.array([[0,1,2,4,3],[0,1,2,3,4]])
>>> a[np.arange(a.shape[0])[:,np.newaxis],i]
array([[ 0.72322499, -0.05376714, -0.28316358, -0.90814293, 1.43025844],
[ 0.7459107 , 0.43020728, 0.05411805, -0.32813465, 2.38829386]])
这是N维版本:
^{pr2}$
其工作原理如下:
好的,让我们从一个三维数组开始。在>>> import numpy as np
>>> a = np.arange(24).reshape((2,3,4))
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
可以通过指定沿每个轴的索引来访问此数组的元素,如下所示:>>> a[0,1,2]
6
这相当于a[0][1][2],如果我们处理的是列表而不是数组,那么您将如何访问同一个元素。在
Numpy让您在分割阵列时变得更加花哨:>>> a[[0,1],[1,1],[2,2]]
array([ 6, 18])
>>> a[[0,1],[1,2],[2,2]]
array([ 6, 22])
如果我们处理的是列表,这些示例将等价于[a[0][1][2],a[1][1][2]]和{}。在
你甚至可以省去重复的索引,numpy就会知道你想要什么。例如,上面的例子可以等价地写成:>>> a[[0,1],1,2]
array([ 6, 18])
>>> a[[0,1],[1,2],2]
array([ 6, 22])
在每个维度中切片的数组(或列表)的形状只影响返回数组的形状。换言之,numpy不关心在拉取值时,您是否尝试用shape (2,3,4)数组来索引数组,只是它会反馈给您一个shape (2,3,4)数组。例如:>>> a[[[0,0],[0,0]],[[0,0],[0,0]],[[0,0],[0,0]]]
array([[0, 0],
[0, 0]])
在本例中,我们反复获取相同的元素a[0,0,0],但是numpy返回的数组与我们传入的相同。在
好吧,谈谈你的问题。您需要的是用index数组中的数字沿最后一个轴索引数组。因此,对于问题中的示例,您希望[[a[0,0],a[0,1],a[0,2],a[0,4],a[0,3]],a[1,0],a[1,1],...
您的索引数组是多维的,正如我前面所说的,这并没有告诉numpy您要从哪里提取这些索引;它只是指定了输出数组的形状。因此,在您的示例中,您需要告诉numpy,前5个值将从a[0]中提取,后5个值将从a[1]中提取。容易的!在>>> a[[[0]*5,[1]*5],index]
它在N维中变得很复杂,但是让我们对我上面定义的三维数组a来做。假设我们有以下索引数组:>>> i = np.array(range(4)[::-1]*6).reshape(a.shape)
>>> i
array([[[3, 2, 1, 0],
[3, 2, 1, 0],
[3, 2, 1, 0]],
[[3, 2, 1, 0],
[3, 2, 1, 0],
[3, 2, 1, 0]]])
所以,这些值都是沿着最后一个轴的指数。我们需要告诉numpy这些数字将从第一和第二轴的索引中提取;也就是说,我们需要告诉numpy第一个轴的索引是:i1 = [[[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]],
[[1, 1, 1, 1],
[1, 1, 1, 1],
[1, 1, 1, 1]]]
第二轴的指数为:i2 = [[[0, 0, 0, 0],
[1, 1, 1, 1],
[2, 2, 2, 2]],
[[0, 0, 0, 0],
[1, 1, 1, 1],
[2, 2, 2, 2]]]
然后我们就可以:>>> a[i1,i2,i]
array([[[ 3, 2, 1, 0],
[ 7, 6, 5, 4],
[11, 10, 9, 8]],
[[15, 14, 13, 12],
[19, 18, 17, 16],
[23, 22, 21, 20]]])
生成i1和{}的便捷numpy函数称为np.mgrid。我在我的答案中使用了np.ogrid,这在本例中是等价的,因为我前面谈到了numpy魔术。在
希望有帮助!在