python多维数组排序_Numpy:按多维数组对多维数组排序

这篇博客介绍了如何在Numpy中实现多维数组的排序,特别是通过示例展示了如何使用索引来对二维和三维数组进行排序。文中详细解释了如何利用索引操作对数组的不同轴进行切片,并提供了相应的代码片段,适用于解决复杂的数据排序问题。
摘要由CSDN通过智能技术生成

我还想不出如何在N维中实现这一点,但这里是二维版本:>>> a = np.random.standard_normal(size=(2,5))

>>> a

array([[ 0.72322499, -0.05376714, -0.28316358, 1.43025844, -0.90814293],

[ 0.7459107 , 0.43020728, 0.05411805, -0.32813465, 2.38829386]])

>>> i = np.array([[0,1,2,4,3],[0,1,2,3,4]])

>>> a[np.arange(a.shape[0])[:,np.newaxis],i]

array([[ 0.72322499, -0.05376714, -0.28316358, -0.90814293, 1.43025844],

[ 0.7459107 , 0.43020728, 0.05411805, -0.32813465, 2.38829386]])

这是N维版本:

^{pr2}$

其工作原理如下:

好的,让我们从一个三维数组开始。在>>> import numpy as np

>>> a = np.arange(24).reshape((2,3,4))

>>> a

array([[[ 0, 1, 2, 3],

[ 4, 5, 6, 7],

[ 8, 9, 10, 11]],

[[12, 13, 14, 15],

[16, 17, 18, 19],

[20, 21, 22, 23]]])

可以通过指定沿每个轴的索引来访问此数组的元素,如下所示:>>> a[0,1,2]

6

这相当于a[0][1][2],如果我们处理的是列表而不是数组,那么您将如何访问同一个元素。在

Numpy让您在分割阵列时变得更加花哨:>>> a[[0,1],[1,1],[2,2]]

array([ 6, 18])

>>> a[[0,1],[1,2],[2,2]]

array([ 6, 22])

如果我们处理的是列表,这些示例将等价于[a[0][1][2],a[1][1][2]]和{}。在

你甚至可以省去重复的索引,numpy就会知道你想要什么。例如,上面的例子可以等价地写成:>>> a[[0,1],1,2]

array([ 6, 18])

>>> a[[0,1],[1,2],2]

array([ 6, 22])

在每个维度中切片的数组(或列表)的形状只影响返回数组的形状。换言之,numpy不关心在拉取值时,您是否尝试用shape (2,3,4)数组来索引数组,只是它会反馈给您一个shape (2,3,4)数组。例如:>>> a[[[0,0],[0,0]],[[0,0],[0,0]],[[0,0],[0,0]]]

array([[0, 0],

[0, 0]])

在本例中,我们反复获取相同的元素a[0,0,0],但是numpy返回的数组与我们传入的相同。在

好吧,谈谈你的问题。您需要的是用index数组中的数字沿最后一个轴索引数组。因此,对于问题中的示例,您希望[[a[0,0],a[0,1],a[0,2],a[0,4],a[0,3]],a[1,0],a[1,1],...

您的索引数组是多维的,正如我前面所说的,这并没有告诉numpy您要从哪里提取这些索引;它只是指定了输出数组的形状。因此,在您的示例中,您需要告诉numpy,前5个值将从a[0]中提取,后5个值将从a[1]中提取。容易的!在>>> a[[[0]*5,[1]*5],index]

它在N维中变得很复杂,但是让我们对我上面定义的三维数组a来做。假设我们有以下索引数组:>>> i = np.array(range(4)[::-1]*6).reshape(a.shape)

>>> i

array([[[3, 2, 1, 0],

[3, 2, 1, 0],

[3, 2, 1, 0]],

[[3, 2, 1, 0],

[3, 2, 1, 0],

[3, 2, 1, 0]]])

所以,这些值都是沿着最后一个轴的指数。我们需要告诉numpy这些数字将从第一和第二轴的索引中提取;也就是说,我们需要告诉numpy第一个轴的索引是:i1 = [[[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0]],

[[1, 1, 1, 1],

[1, 1, 1, 1],

[1, 1, 1, 1]]]

第二轴的指数为:i2 = [[[0, 0, 0, 0],

[1, 1, 1, 1],

[2, 2, 2, 2]],

[[0, 0, 0, 0],

[1, 1, 1, 1],

[2, 2, 2, 2]]]

然后我们就可以:>>> a[i1,i2,i]

array([[[ 3, 2, 1, 0],

[ 7, 6, 5, 4],

[11, 10, 9, 8]],

[[15, 14, 13, 12],

[19, 18, 17, 16],

[23, 22, 21, 20]]])

生成i1和{}的便捷numpy函数称为np.mgrid。我在我的答案中使用了np.ogrid,这在本例中是等价的,因为我前面谈到了numpy魔术。在

希望有帮助!在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值