python动作识别库_用于动作识别的3D ResNets

3D ResNets for Action Recognition

Update (2020/4/13)

We published a paper on arXiv.

We uploaded the pretrained models described in this paper including ResNet-50 pretrained on the combined dataset with Kinetics-700 and Moments in Time.

Update (2020/4/10)

We significantly updated our scripts. If you want to use older versions to reproduce our CVPR2018 paper, you should use the scripts in the CVPR2018 branch.

This update includes as follows:

Refactoring whole project

Supporting the newer PyTorch versions

Supporting distributed training

Supporting training and testing on the Moments in Time dataset.

Adding R(2+1)D models

Uploading 3D ResNet models trained on the Kinetics-700, Moments in Time, and STAIR-Actions datasets

Summary

This is the PyTorch code for the following papers:

This code includes training, fine-tuning and testing on Kinetics, Moments in Time, ActivityNet, UCF-101, and HMDB-51.

Citation

If you use this code or pre-trained models, please cite the following:

@inproceedings{hara3dcnns,

author={Kensho Hara and Hirokatsu Kataoka and Yutaka Satoh},

title={Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?},

booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},

pages={6546--6555},

year={2018},

}

Pre-trained models

Pre-trained models are available here.

All models are trained on Kinetics

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值