python在法律中的应用_Python在共轭梯度法中的运用

共轭梯度法一个重要的优化算法,今天小编就来带大家看看共轭梯度法在Python中是如何实现的。

共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

算法步骤:

b42aa078de9dd06021bc68483de200cb.pngimport random

import numpy as np

import matplotlib.pyplot as plt

def goldsteinsearch(f,df,d,x,alpham,rho,t):

'''

线性搜索子函数

数f,导数df,当前迭代点x和当前搜索方向d,t试探系数>1,

'''

flag = 0

a = 0

b = alpham

fk = f(x)

gk = df(x)

phi0 = fk

dphi0 = np.dot(gk, d)

alpha=b*random.uniform(0,1)

while(flag==0):

newfk = f(x + alpha * d)

phi = newfk

# print(phi,phi0,rho,alpha ,dphi0)

if (phi - phi0 )<= (rho * alpha * dphi0):

if (phi - phi0) >= ((1 - rho) * alpha * dphi0):

flag = 1

else:

a = alpha

b = b

if (b < alpham):

alpha = (a + b) / 2

else:

alpha = t * alpha

else:

a = a

b = alpha

alpha = (a + b) / 2

return alpha

def Wolfesearch(f,df,d,x,alpham,rho,t):

'''

线性搜索子函数

数f,导数df,当前迭代点x和当前搜索方向d

σ∈(ρ,1)=0.75

'''

sigma=0.75

flag = 0

a = 0

b = alpham

fk = f(x)

gk = df(x)

phi0 = fk

dphi0 = np.dot(gk, d)

alpha=b*random.uniform(0,1)

while(flag==0):

newfk = f(x + alpha * d)

phi = newfk

# print(phi,phi0,rho,alpha ,dphi0)

if (phi - phi0 )<= (rho * alpha * dphi0):

# if abs(np.dot(df(x + alpha * d),d))<=-sigma*dphi0:

if (phi - phi0) >= ((1 - rho) * alpha * dphi0):

flag = 1

else:

a = alpha

b = b

if (b < alpham):

alpha = (a + b) / 2

else:

alpha = t * alpha

else:

a = a

b = alpha

alpha = (a + b) / 2

return alpha

def frcg(fun,gfun,x0):

# x0是初始点,fun和gfun分别是目标函数和梯度

# x,val分别是近似最优点和最优值,k是迭代次数

# dk是搜索方向,gk是梯度方向

# epsilon是预设精度,np.linalg.norm(gk)求取向量的二范数

maxk = 5000

rho = 0.6

sigma = 0.4

k = 0

epsilon = 1e-5

n = np.shape(x0)[0]

itern = 0

W = np.zeros((2, 20000))

f = open("共轭.txt", 'w')

while k < maxk:

W[:, k] = x0

gk = gfun(x0)

itern += 1

itern %= n

if itern == 1:

dk = -gk

else:

beta = 1.0 * np.dot(gk, gk) / np.dot(g0, g0)

dk = -gk + beta * d0

gd = np.dot(gk, dk)

if gd >= 0.0:

dk = -gk

if np.linalg.norm(gk) < epsilon:

break

alpha=goldsteinsearch(fun,gfun,dk,x0,1,0.1,2)

# alpha=Wolfesearch(fun,gfun,dk,x0,1,0.1,2)

x0+=alpha*dk

f.write(str(k)+' '+str(np.linalg.norm(gk))+"

")

print(k,alpha)

g0 = gk

d0 = dk

k += 1

W = W[:, 0:k+1] # 记录迭代点

return [x0, fun(x0), k,W]

def fun(x):

return 100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0]) ** 2

def gfun(x):

return np.array([-400 * x[0] * (x[1] - x[0] ** 2) - 2 * (1 - x[0]), 200 * (x[1] - x[0] ** 2)])

if __name__=="__main__":

X1 = np.arange(-1.5, 1.5 + 0.05, 0.05)

X2 = np.arange(-3.5, 4 + 0.05, 0.05)

[x1, x2] = np.meshgrid(X1, X2)

f = 100 * (x2 - x1 ** 2) ** 2 + (1 - x1) ** 2 # 给定的函数

plt.contour(x1, x2, f, 20) # 画出函数的20条轮廓线

x0 = np.array([-1.2, 1])

x=frcg(fun,gfun,x0)

print(x[0],x[2])

# [1.00318532 1.00639618]

W=x[3]

# print(W[:, :])

plt.plot(W[0, :], W[1, :], 'g*-') # 画出迭代点收敛的轨迹

plt.show()

代码中求最优步长用得是goldsteinsearch方法,另外的Wolfesearch是试验的部分,在本段程序中不起作用。

迭代轨迹:

b0026ceba121c98d2d2ccf2fdf3f1b98.png

5350d1058d88d4303abda9d4f3ea6823.png

三种最优化方法的迭代次数对比:

1f7d3a6dbdcdb0e2816778959e417d3a.png

以上就是共轭梯度法在Python中的实现,是不是很有意思呢~更多Python学习推荐:云海天Python教程网。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值