描述
相传韩信才智过人,从不直接清点自己军队的人数,只要让士兵先后以三人一排、五人一排、七人一排地变换队形,而他每次只掠一眼队伍的排尾就知道总人数了。输入3个非负整数a,b,c ,表示每种队形排尾的人数(a<3,b<5,c<7),输出总人数的最小值(或报告无解)。已知总人数不小于10,不超过100 。
输入
输入3个非负整数a,b,c ,表示每种队形排尾的人数(a<3,b<5,c<7)。例如,输入:2 4 5
输出
输出总人数的最小值(或报告无解,即输出Noanswer)。实例,输出:89
样例输入
2 1 6
样例输出
41
定理1 如a被n除所得的余数等b被n除所得的余数,c被n除所得的余数等于d被n除所得的余数, 则ac被n除所得的余数等于b d被n除所得的余数。
用同余式叙述就是:
如a≡b(mod n ),c≡d(mod n )
则ac≡b d(mod n )
定理2 被除数a加上或减去除数b的倍数,再除以b,余数r不变。即
如a ≡ r(mod b ),则a ± b n≡r(mod b )
例如70≡1(mod 3 )可得70±10×3≡1(mod 3 )
【韩信点兵法口诀的原理】
①能被5,7除尽数是35k,其中k=2,即70除3正好余1,70a 除3正好余a。
②能被3,7除尽数是21k,其中k=1,即21除5正好余1,21b 除5正好余b。
③能被3,5除尽数是15k,其中k=1,即15除7正好余1,15c 除7正好余c。
这样——
根据①可知 70a+21b+15c 除3正好余a。
根据②可知 70a+21b+15c 除5正好余b。
根据③可知 70a+21b+15c 除7正好余c。
(70a+21b+15c)%(3*5*7)为最小值,然后再判断最小值是否满足条件。
1 #include
2
3 intmain(){4 inta;5 intb;6 intc;7 intresult;8
9 scanf("%d%d%d",&a,&b,&c);10 result=(70*a+21*b+15*c)%(3*5*7);11
12 if(result>=10 && result<=100)13 printf("%d\n",result);14
15 else
16 printf("No answer\n");17
18 return 0;19 }